
Project 1: Orientation Tracking
Behrad Rabiei

Dept. of Electrical and Computer Engineering
University of California San Diego

Email: brabiei@ucsd.edu

Abstract—This paper is a report for Project 1 of ECE 276A
(Sensing and Estimation in Robotics). The objective of the project
is to track the orientation of a rigid body given sensor measure-
ments by performing projected gradient descent. Additionally,
we aim to generate a panorama by linking camera readings with
rotations based on timestamps.

I. INTRODUCTION

Localization, planning, mapping, and control are often re-
ferred to as the core components of robotic autonomy. This
stack represents the fundamental capabilities required for a
robot to navigate, interact with its environment, and perform
tasks autonomously. Localization involves determining the
robot’s position and orientation relative to its environment.
This typically utilizes sensors such as GPS, IMUs (Inertial
Measurement Units), wheel encoders, and visual odometry to
accurately estimate the robot’s pose. In this project, we present
an approach to perform localization for a camera equipped
with an IMU by tracking its orientation over time. For the
sake of validating our approach, we are provided with VICON
(Motion Capture) data to serve as ground truth. As a bonus,
given the camera images with corresponding timestamps, we
aim to create a panorama that represents the images the camera
recorded in 3D space. This can act as an additional measure
to see if our approach works.

II. PROBLEM FORMULATION

A. Orientation Tracking

We aim to perform localization for a camera equipped
with an IMU by tracking its orientation over time. An image
of the setup is provided in the Appendix. The readings
from the IMU give us linear acceleration (Ax, Ay, Az) and
angular velocity (Wx, Wy, Wz) in 3D space each with a
corresponding timestamp. Let the linear acceleration data at
time t be at = [Axt, Ayt, Azt], the angular velocity at time
t ωt = [Wxt,Wyt,Wzt] and let qt ∈ H∗ denote the
quaternion representing the body-frame orientation at time t.
Using the IMU angular velocity measurements ωt and the
differences between consecutive timestamps τt, we can predict
the quaternion at the next step qt+1 using the quaternion
kinematics motion model:

qt+1 = f(qt, τtωt) := qt ◦ exp([0, τtωt/2]). (1)

Note that exp(·) is the exponential function for quaternions
defined in Lecture 3.

Since the body is undergoing pure rotation, the acceleration
of the body should be approximately [0, 0,−g], in the world
frame of reference, where g is the acceleration due to gravity.
This is the case because gravity is always in play. Hence, the
measured acceleration at in the IMU frame should agree with
gravity acceleration after it is transformed to the IMU frame
using the orientation qt, leading to the following observation
model:

at = h(qt) := q−1
t ◦ [0, 0, 0,−g] ◦ qt. (2)

At this point, having both a model for our kinematics and
our observation, we aim to estimate the orientation trajectory
q1:T := q1,q2, ...,qT .

B. Panorama

After obtaining an estimate for our orientation trajectory,
our objective is to generate a panoramic representation that
encapsulates the visual data captured by the camera in 3D
space. This entails seamlessly stitching together all the images,
each captured at its unique orientation. The camera data
comprises 320x240 RGB images, each paired with its corre-
sponding timestamp. Our aim is to assemble these images into
a cohesive larger frame, ensuring that their relative orientations
are preserved throughout the panorama.

III. TECHNICAL APPROACH

A. Sensor Calibration

Note: The following is for dataset one; you can find the
images for the other datasets in the Appendix.
Before we can get started, we first need to ensure that the data
we have at hand is accurate and representative. We can first
see a visualization for our IMU data in figure 1:

In the notes, it is mentioned that the IMU Ax and Ay
directions are flipped (due to device design), so positive accel-
eration in the body frame will result in negative acceleration
reported by the IMU. To correct this, we need to multiply Ax
and Ay by -1. We also discover that the order of the angular
velocity is [Wz, Wx, Wy], so we need to rearrange the angular
velocity data. Additionally, the biases and scale factors of the
accelerometers and gyroscopes are unknown in our case, so
it is important to find those values. We need to look at the
datasheets for the IMU’s sensors and use the VICON data as
ground truth to validate our data. The equations for the scale
factor of the accelerometer and gyroscope are the following,
respectively:

Fig. 1. IMU Data before Processing.

sfa = Vref/1023/Sensitivity (3)

sfg = Vref/1023/Sensitivity ∗ (π/180) (4)

After investigating the datasheets, we find the Vref is 3300
mV for both the accelerometer and gyroscope, and the sensi-
tivities are 300 mV/g and 3.33 mV/deg/s, respectively. For the
gyroscope, we need to multiply by π/180 to convert our unit
to radians. In every dataset, the first few seconds are static,
i.e., there is no rotation. We can use this static data portion to
calibrate the IMU bias, e.g., the acceleration measured by the
accelerometer in the first few seconds should be [0, 0, 1]T in
gravity units. For my implementation, I compute the mean of
the first 300 samples to get the bias for all six IMU readings.
Now that we have the bias and the scale factor, we can
compute the actual value of the IMU by using the following
equation:

value = (raw − bias) · sf (5)

We need to adjust all 6 readings by their corresponding
biases and scale factors. Finally, we need to remember to shift
our acceleration in the z-axis by adding 1. This is to account
for the constant acceleration caused by gravity. Known glitch:
Some IMU datasets contain a small glitch in the beginning,
where all 3 gyro values jump to a fixed value and then
come back to normal operation (typically several seconds after
starting). This problem occurred during data collection when a
reset pin fired, locking the gyros into the nominal zero, rather
than the true zero bias gyro level. From my analysis, this
occurred in datasets 2, 4, and 9. Please refer to the Appendix
for a visual representation. Our final calibrated IMU data can
be seen in Figure 2.

Now that our IMU data is in order, we would like to
visualize our VICON data for the sake of gaining intuition. The
VICON data stores rotation matrices mapping the orientation
of the body frame to the world frame. To plot the VICON
data, we will get the Euler angles from the rotation matrices
and plot rotation in the 3 axes independently. The angles in

Fig. 2. IMU Data after Processing.

the x, y, and z axes over time are shown in Figure 3. Note:
The sudden ’noise’ in the x and z axes are normal. This is
because −180 deg and 180 deg are the same.

Fig. 3. Euler Angles of VICON.

Small programming note, the IMU data is stored as ’uint16’.
This means that it cannot store negative or floating-point
values. However, once we scale and shift the data, we need
to be able to store both negative and floating-point values. To
account for this, we need to convert the IMU data to ’float64’.

B. Orientation Tracking

Our objective for orientation tracking is to estimate the ori-
entation of the body over time using the IMU angular velocity
ωt and linear acceleration at measurements. We can construct
a cost function that formulates an optimization problem to
estimate the orientation trajectory q1:T := q1,q2, ...,qT based
on the motion model in (1) and observation model in (2). The
cost function for the optimization problem can be defined

as:

c(q1:T) :=
1

2

T−1∑
t=0

∥2 log(q−1
t+1 ◦ f(qt, τtωt))∥22

+
1

2

T∑
t=1

∥at − h(qt)∥22

(6)

Note that log(·) is the logarithm function for quaternions
defined in Lecture 3.

The first term evaluates the disparity between the estimated
orientation and the prediction from the motion model, while
the second term assesses the deviation between the accel-
eration measurements and the forecast from the observation
model. The error in the motion model stems from the relative
rotation q−1

t ◦ f(qt, τtωt) between the anticipated orientation
f(qt, τtωt) and the estimated orientation qt+1. This error is
characterized by the axis-angle parametrization of the relative
rotation error using the quaternion log(·) function, measuring
the rotation angle as the norm of the axis-angle vector.
Throughout the optimization, it’s imperative to maintain the
constraint that the quaternions qt retain unit norm, qt ∈ H∗.
Thus, the optimization problem is inherently constrained:

min
q1:T

c(q1:T) (7)

s.t. ∥qt∥2 = 1 ∀t ∈ {1, 2, . . . , T} (8)

Initializing with q0 = [1, 0, 0, 0], we will implement a pro-
jected gradient descent algorithm to optimize the quaternion
trajectory qt. With our initial q0, we will recursively feed it
into the motion model (1) to get our initial trajectory estimate.
Figure 4 shows a comparison of our initial trajectory against
the VICON data.

Fig. 4. Motion Estimate Vs. VICON (Initial).

We can see that our calibration is correct, and we are
roughly estimating the true motion. Now with our trajectory
initialized, we would like to test our observation model (2). We

will feed our trajectory into the observation model and com-
pare its output to the true acceleration data. This comparison
can be seen in Figure 5.

Fig. 5. Observation Estimate Vs. Accelerometer (Initial).

This again reinforces that our calibration is correct and that
our observation model is roughly estimating the accelerometer
data.

C. Panorama

Now that we have our trajectory estimates, our objective is
to construct a panoramic image by stitching the RGB camera
images over time based on the body orientation q1:T . To
accomplish this, we must first find the longitude λ and latitude
ϕ of each pixel using the number of rows and columns and
the horizontal (60 degrees) and vertical (45 degrees) fields of
view. This can be accomplished using the following equations:

λ = (π/180) · ((45/240) · y − 22.5) (9)

ϕ = (π/180) · ((60/320) · y − 30). (10)

After finding these angles, we need to represent our angles
in spherical coordinates by assuming the depth is 1 (i.e.,
(λ, ϕ, 1)). Then we will convert our spherical coordinates to
Cartesian coordinates using the following equations:

x = − sin(ϕ) · cos(λ)
y = cos(ϕ) · sin(λ)
z = sin(ϕ)

At this point, we must rotate our Cartesian coordinate.
We can accomplish this by multiplying our point with RT

where R is the rotation matrix representation of our estimated
quaternion qt. Now that we have rotated

our pixels, we now need to go back to spherical coordinates.
This can be accomplished using the following equations:

r = 1

ϕ = arcsin
(z
r

)
λ = arctan 2(y,−x)

Now we must map these angles back to some arbitrary
pixel coordinate. For my implementation, I have constructed
an image that is larger than the original images that we were
given. This image is where the panorama will be projected.
The dimensions are 480x960. The equations for finding the
new pixel coordinates are:

row =

(
479

π

)(π
2
+ ϕ

)
col =

(
959

2π

)
(π + λ)

Finally, with the new pixel coordinates at our disposal, we
can copy the pixel values from the original image to the
panorama.

IV. RESULTS

V. ORIENTATION TRACKING

Note: The following is for dataset one; you can find the
images for the other datasets in the Appendix.
After performing the constraint gradient descent, we attain
a much more accurate estimate for both the trajectory and
observation estimates. Figures 6 and 7 show our final estimates
after training, and Figure 8 shows the loss curve during
training. Note, for datasets 2, 4 and 9, where the reset button is
triggered, we get a much worse initial estimate but drastically
improve our estimates after training. With that said, there is
an offset that appears in the yaw angle.

Fig. 6. Motion Estimate Vs. VICON (Final).

Fig. 7. Observation Estimate Vs. Accelerometer (Final).

Fig. 8. Loss Curve.

Fig. 9. Final Panoramic.

VI. PANORAMA

Note: The following is for dataset 9; you can find the images
for the other datasets in the Appendix.

After following the steps we mentioned, we get a rough
panoramic that relates the relative positions of the images.
Please look at Figure 9 for the final result. The final result
looks fairly well for this dataset. However, certain datasets
look quite distorted. I assume that this is caused by the camera
tilting too high or too low. Please refer to the appendix for
other dataset results.

REFERENCES

[1] https://en.wikipedia.org/wiki/Spherical coordinate system
[2] https://jax.readthedocs.io/en/latest/
[3] https://natanaso.github.io/ece276a/

APPENDIX

A. Camera Setup

Fig. 10. Camera Setup.

B. Panoramics

Dataset 1: Dataset 2: Dataset 8: Dataset 9: Dataset 10:

Fig. 11. Panoramic for Dataset 1.

Fig. 12. Panoramic for Dataset 2.

Dataset 11:

Fig. 13. Panoramic for Dataset 8.

Fig. 14. Panoramic for Dataset 9.

C. Motion Estimate VS VICON (Initial)

Dataset 2: Dataset 3: Dataset 4: Dataset 5: Dataset 6: Dataset
7: Dataset 8: Dataset 9: Dataset 10: Dataset 11:

D. Motion Estimate VS VICON (Final)

Dataset 2: Dataset 3: Dataset 4: Dataset 5: Dataset 6: Dataset
7: Dataset 8: Dataset 9: Dataset 10: Dataset 11:

Fig. 15. Panoramic for Dataset 10.

Fig. 16. Panoramic for Dataset 11.

CONTENTS

I Introduction 1

II Problem Formulation 1
II-A Orientation Tracking 1
II-B Panorama 1

III Technical Approach 1
III-A Sensor Calibration 1
III-B Orientation Tracking 2
III-C Panorama 3

IV Results 4

V Orientation Tracking 4

VI Panorama 5

References 5

Appendix 6
A Camera Setup 6
B Panoramics 6
C Motion Estimate VS VICON (Initial) . 6
D Motion Estimate VS VICON (Final) . . 6

