
Project 1: Dynamic Programming
Behrad Rabiei

Dept. of Electrical and Computer Engineering
University of California San Diego

Email: brabiei@ucsd.edu

Abstract—This paper is the report for project 1 of ECE
276B (Planning and Learning in Robotics). The project requires
you to find an optimal policy for navigating an environment
using Dynamic Programming. We are asked to implement the
algorithm to work with both know environments and unknown
environments.

I. INTRODUCTION

Autonomous robotic navigation represents a cornerstone
of modern robotics, crucial for enhancing the autonomy and
efficiency of robots in complex and dynamic environments.
The development of robust navigation systems enables robots
to perform a wide range of tasks, from industrial automation
and logistics to autonomous vehicles and space exploration.
By leveraging advanced sensors, algorithms, and learning
techniques, these systems aim to improve safety, reduce human
labor, and expand the capabilities of robots beyond traditional
boundaries. The motivation behind advancing autonomous
navigation is not only to increase operational efficiency but
also to innovate in areas where human access is dangerous or
impractical.

A. Markov Decision Process and Dynamic Programming in
Autonomous Navigation

The Markov Decision Process (MDP) is a mathematical
framework used for modeling decision making in situations
where outcomes are partly random and partly under the
control of a decision maker. MDPs are particularly useful
in autonomous navigation, providing a structured way to
determine the optimal path a robot should take in a stochastic
environment. Dynamic Programming (DP) is a method for
solving complex problems by breaking them down into simpler
subproblems; it is crucial in solving MDPs efficiently. By
utilizing DP, autonomous systems can evaluate the long-term
consequences of their actions, ensuring that the chosen paths
are not only locally optimal but also globally beneficial.
This capability is indispensable for navigating through unpre-
dictable terrains and adapting to new obstacles, enhancing both
the robustness and reliability of autonomous robots.

II. PROJECT OBJECTIVE

The primary objective of this project is to design and imple-
ment a dynamic programming algorithm to efficiently guide
an autonomous agent through a Door & Key environment.
Our agent, depicted as a red triangle, must navigate to a
goal location, shown as a green square, potentially obstructed
by a closed door. To reach the goal, the agent might need

to pick up a key to unlock the door, while managing its
energy by minimizing the cost of actions such as moving
forward (MF), turning left (TL), and turning right (TR),
along with special actions like picking up a key (PK) and
unlocking the door (UD). The project comprises two main
scenarios: (A) a “Known Map” scenario where specific control
policies are devised for each of seven distinct environments
provided, and (B) a “Random Map” scenario that requires a
robust control policy applicable across thirty-six random 8x8
environments. This task aims to enhance the agent’s ability to
adapt to both structured and unpredictable settings, thereby
improving its autonomy and decision-making efficiency in
dynamic conditions.

III. PROBLEM FORMULATION

Now we will formally define our problem.

A. Action Space

The action space of the autonomous agent, denoted as U ,
is defined as a set of possible actions that the agent can take
at any given state. The action set includes:

U = {MF,TL,TR,PK,UD}

where MF stands for Move Forward, TL for Turn Left, TR for
Turn Right, PK for Pick Up Key, and UD for Unlock Door.
Each action is associated with a positive energy cost, reflecting
the effort required to execute the action.

B. State Space: Part A

The state space, denoted as X , describes all possible situa-
tions that the agent can encounter within the environment. A
state in X is defined by a dictionary containing the following
elements:

X = {(′x position′,′ y position′,′ direction′,′ havekey′,′ isgoal′)}

where x and y represent the agent’s coordinates on the grid,
d denotes the direction the agent is facing, k is a boolean
indicating whether the agent has picked up the key, and is goal
is a boolean that becomes true when the agent reaches the goal
location. The directions are encoded as:

• LEFT = 0
• UP = 1
• RIGHT = 2
• DOWN = 3

C. Constraints on State Space

The state space X is constrained such that states where
the agent’s x and y coordinates coincide with wall locations
are excluded. This constraint ensures that the agent’s path
planning algorithm only considers valid movement within the
boundaries and internal structures of the environment.

D. Motion Model: Part A

The motion model of the agent is a critical component in
simulating how actions affect the state within the environment.
It is defined mathematically by the transition function T :
X ×U → X , which maps a state and an action to a new state
according to the rules specified below:

• Move Forward (MF): If the action is MF, the agent
moves in the direction it is currently facing. The new
position (x′, y′) is calculated as:

x′ = x+∆x(d), y′ = y +∆y(d)

where ∆x(d) and ∆y(d) are directional increments based
on the agent’s current direction d. The agent’s goal state
is updated if it reaches the goal position. Movement is
constrained by the presence of doors and walls; the agent
remains in the current state if a move would result in a
collision with a closed door or a wall.

• Turn Left (TL) and Turn Right (TR): These actions
modify the agent’s direction:

d′ = (d+ δ) mod 4

where δ is −1 for TL and +1 for TR, representing a
counter-clockwise and clockwise turn, respectively.

• Pick Up Key (PK): The agent attempts to pick up a key
if it is directly in front of it. If successful (i.e., there is
a key in the adjacent cell in the direction the agent is
facing), the ’have key’ state is set to true. Otherwise, the
state remains unchanged.

• Unlock Door (UD): The agent attempts to unlock a door
if it is directly in front of it and the agent possesses a key.
The state changes to place the agent on the other side of
the door if successful. If the door cannot be unlocked or
there is no door, the state remains unchanged.

The transition function ensures that the agent only transi-
tions to states within the predefined state space X , excluding
any state corresponding to invalid positions (e.g., outside the
grid or within a wall).

E. Extended State Space Definition: Part B

In the ”Unknown Environment” task, the state space is
extended to capture information about the environment. Since
we know that the key, door states, and goal location are from
a limited list of possibilities, we try to adapt our state space

to keep track of their possible spawning locations. The state
for this task is defined as a tuple x ∈ X where:

x = {(′x position′ : x,
′y position′ : y,
′direction′ : d,
′have key′ : key,
′door1′ : d1,
′door2′ : d2,
′goal loc′ : g,
′key loc′ : k)}

Each component of the state tuple is described as follows:
• x, y: Coordinates of the agent on the grid.
• d: The current direction the agent is facing, encoded

numerically.
• key: A boolean indicating whether the agent has picked

up the key.
• d1, d2: States of the doors (open or closed), reflecting

the conditions of specific barriers that might affect navi-
gational strategies.

• g: The location of the goal, which can be one of three
locations.

• k: The location of the key, which, like the goal, may be
one of three locations.

F. Motion Model: Part B

1) Action Dynamics:
• Move Forward (MF): When the action is MF, the agent

moves in its current direction:

x′ = x+∆x(d), y′ = y +∆y(d)

If the new position (x′, y′) coincides with a wall location,
the state remains unchanged. Additional conditions are
checked as follows:

If (x′, y′) in key locations and have key = 0,

and (x′, y′) = key locations[key loc],
then return state.

If (x′, y′) in door locations,
and (x′, y′) = door locations[i] and door[i] = 0, then return state.

• Turn Left (TL) and Turn Right (TR): These actions
adjust the agent’s facing direction:

d′ = (d+ δ) mod 4

where δ is −1 for TL and +1 for TR.
• Pick Up Key (PK): The ’have key’ state is updated

under the following condition:

If (x+∆x(d), y +∆y(d)) = key locations[k]
and have key = 0, then set have key = 1.

Otherwise, the state remains unchanged.

• Unlock Door (UD): If the conditions are met, the door’s
state is updated and the agent moves through:

If (x+∆x(d), y +∆y(d)) = door locations[i]
and have key = 1 and door[i] = 0,

then set door[i] = 1 and update position.

If these conditions are not met, the state remains un-
changed.

2) State Validation: After any action, the resulting state is
checked against all valid states in X . If the new state does not
exist in X , the state reverts to the previous state, ensuring that
the agent always remains in a valid state.

G. Time Horizon

The time horizon T of the decision process is defined as the
cardinality of the state space X minus one, T = |X |−1. This
formulation of the time horizon reflects the maximum number
of transitions the agent might reasonably make to explore all
possible states before reaching a terminal condition, ensuring
comprehensive coverage of the state space in the decision-
making process.

H. Cost Functions

1) Intermediate Cost Function: The intermediate cost func-
tion c : X × U → R assigns a cost to each action taken by
the agent from any state. The cost associated with all actions
is uniformly set to 1, except when an action directly leads to
the goal position. In such a case, the cost is considered as part
of the terminal cost, hence not incremented here. This cost
structure incentivizes the agent to find the shortest path to the
goal under normal circumstances.

2) Terminal Cost Function: The terminal cost function cT :
X → R is defined based on the goal achievement:

cT (x) =

{
0 if is goal(x) = 1

∞ otherwise

This function assigns a cost of zero if the agent reaches the
goal state, indicating successful completion of its objective.
Conversely, if the agent fails to reach the goal state by the
end of the time horizon, the cost is set to infinity, reflecting
the failure of the mission and strongly penalizing non-optimal
paths that do not lead to the goal.

IV. TECHNICAL APPROACH

In this project, we developed a dynamic programming
algorithm to solve the Markov Decision Process (MDP) for
autonomous robotic navigation in a simulated environment
known as the Door & Key scenario. Our approach sys-
tematically defines and addresses the complexities associated
with both known and unknown map scenarios, leveraging the
principles of dynamic programming to compute an optimal
policy for navigating through these environments.

A. Dynamic Programming Algorithm Implementation

The core of our technical approach involves implementing
the dynamic programming algorithm outlined in lecture 4. The
algorithm accepts the following inputs:

• A finite set of states X and actions U ,
• Initial and terminal state distributions µ0 and µf ,
• An intermediate cost function ℓ,
• A transition probability pf ,
• A terminal time T ,
• A discount factor γ,
• A state-value function q.
The algorithm proceeds by initializing the value function

VT (x) for each state x as q(x). It then iteratively calculates
the cost Qt(x, u) for each action u and updates the value
function Vt(x) by finding the minimum expected cost over all
actions. The optimal policy πt(x) at each state is determined
by selecting the action that minimizes Qt(x, u).

B. Solving for Known and Unknown Environments

1) Known Map Scenario:
• State Space and Action Dynamics: The agent’s

state space and action set were clearly defined, with
specific rules governing the transitions based on the
agent’s interactions with the environment, such as
moving, turning, picking up a key, and unlocking a
door.

• Algorithm Application: For each of the seven
predefined environments, the dynamic programming
algorithm was applied using the exact map layout
and the initial conditions provided. This allowed for
a precise calculation of the optimal policy tailored
to each specific environment.

2) Random Map Scenario:
• Extended State Space: In scenarios where the

map configuration was not known in advance, we
extended the state space to include potential con-
figurations of keys, doors, and goal locations. This
adaptation was necessary to accommodate the vari-
ability in the map layouts and to ensure robustness
in the policy generated.

• Adaptive Policy Computation: The algorithm was
designed to adjust dynamically as the agent dis-
covered new information about the environment.
This involved recalculating the optimal policy based
on the updated state information, ensuring that
the agent could adapt to unforeseen obstacles and
changes in the environment layout.

V. RESULTS

The following are the results of the algorithm. We can see
that in instances where the key is not necessary, the agent goes
straight to the goal. In instances where the key is necessary
then it will get the key first. I have shown frame by frame for
doorkey-6x6-direct and DoorKey-8x8-9. The rest of the paths
are written out.

Fig. 1. Frame 1 for direct environment

Fig. 2. Frame 2 for direct environment

Fig. 3. Frame 3 for direct environment

Fig. 4. Frame 4 for direct environment

Fig. 5. Frame 5 for direct environment

Fig. 6. Frame 6 for direct environment

Known Environment:
Random Environment:

Fig. 7. Frame 1 for random environment

A. Part A

doorkey-5x5-normal [TR, TR, PK, TR, UD, MF, MF, TR,
MF]
doorkey-6x6-normal [TL, MF, PK, TR, TR, MF, TR, MF,
UD, MF, MF, TR, MF]
doorkey-8x8-normal [TR, MF, TL, MF, TR, MF, MF, MF,
PK, TR, TR, MF, MF, MF, TR, UD, MF, MF, MF, TR, MF,
MF, MF]
doorkey-6x6-direct [MF, MF, TR, MF, MF]
doorkey-8x8-direct [MF, TL, MF, MF, MF, TL, MF]
doorkey-6x6-shortcut [PK, TL, TL, UD, MF, MF]
doorkey-8x8-shortcut [TR, MF, TR, PK, TL, UD, MF, MF]

Fig. 8. Frame 2 for random environment

Fig. 9. Frame 3 for random environment

Fig. 10. Frame 4 for random environment

Fig. 11. Frame 5 for random environment

Fig. 12. Frame 6 for random environment

B. Part B

DoorKey-8x8-1 [MF, MF, MF, TR, MF, MF, TL, MF]
DoorKey-8x8-2 [MF, MF, MF, TR, MF, MF, TL, MF]
DoorKey-8x8-3 [TR, MF, MF, TL, MF, MF, MF, MF]
DoorKey-8x8-4 [MF, MF, MF, MF, TL, MF, PK, TL, MF,
TL, MF, UD, MF, MF, TL, MF]
DoorKey-8x8-5 [TR, MF, MF, MF, TL, MF, MF]
DoorKey-8x8-6 [MF, MF, MF, TR, MF, MF, MF, TR, MF]
DoorKey-8x8-7 [TR, MF, MF, MF, TL, MF, MF]
DoorKey-8x8-8 [MF, MF, MF, MF, TL, MF, PK, TL, MF,
TL, MF, UD, MF, MF, MF, TR, MF]
DoorKey-8x8-9 [TR, MF, MF, TR, MF]
DoorKey-8x8-10 [MF, MF, MF, TR, MF, MF, TR, MF, MF,
MF, MF]
DoorKey-8x8-11 [TR, MF, MF, TR, MF]
DoorKey-8x8-12 [MF, MF, MF, MF, TL, MF, PK, TL, MF,
TL, MF, UD, MF, MF, TR, MF, MF, MF, MF]
DoorKey-8x8-13 [MF, MF, MF, TR, MF, MF, TL, MF]
DoorKey-8x8-14 [MF, MF, MF, TR, MF, MF, TL, MF]
DoorKey-8x8-15 [TR, MF, MF, TL, MF, MF, MF, MF]
DoorKey-8x8-16 [MF, MF, TL, PK, TR, MF, TR, UD, MF,
MF, TL, MF]
DoorKey-8x8-17 [TR, MF, MF, MF, TL, MF, MF]
DoorKey-8x8-18 [MF, MF, MF, TR, MF, MF, MF, TR, MF]
DoorKey-8x8-19 [TR, MF, MF, MF, TL, MF, MF]
DoorKey-8x8-20 [MF, MF, TL, PK, TR, MF, TR, UD, MF,
MF, MF, TR, MF]
DoorKey-8x8-21 [TR, MF, MF, TR, MF]
DoorKey-8x8-22 [MF, MF, MF, TR, MF, MF, TR, MF, MF,
MF, MF]
DoorKey-8x8-23 [TR, MF, MF, TR, MF]
DoorKey-8x8-24 [MF, MF, TL, PK, TL, MF, MF, TL, UD,
MF, MF, TR, MF]
DoorKey-8x8-25 [MF, MF, MF, TR, MF, MF, TL, MF]
DoorKey-8x8-26 [MF, MF, MF, TR, MF, MF, TL, MF]
DoorKey-8x8-27 [TR, MF, MF, TL, MF, MF, MF, MF]
DoorKey-8x8-28 [TL, MF, MF, TL, PK, TL, MF, MF, UD,
MF, MF, TL, MF, MF, MF, MF]
DoorKey-8x8-29 [TR, MF, MF, MF, TL, MF, MF]
DoorKey-8x8-30 [MF, MF, MF, TR, MF, MF, MF, TR, MF]
DoorKey-8x8-31 [TR, MF, MF, MF, TL, MF, MF]
DoorKey-8x8-32 [TL, MF, MF, TL, PK, TL, MF, MF, UD,

MF, MF, MF, TL, MF, MF]
DoorKey-8x8-33 [TR, MF, MF, TR, MF]
DoorKey-8x8-34 [MF, MF, MF, TR, MF, MF, TR, MF, MF,
MF, MF]
DoorKey-8x8-35 [TR, MF, MF, TR, MF]
DoorKey-8x8-36 [TL, MF, MF, TL, PK, TL, MF, MF, UD,
MF, MF, TR, MF]

VI. CONCLUSION

The dynamic programming algorithm effectively computed
optimal navigation policies for both known and unknown
environments. The adaptability and robustness of the algorithm
were demonstrated through its success in handling diverse and
dynamic challenges in the simulation scenarios, validating its
potential for real-world applications in autonomous robotics
navigation.

REFERENCES

[1] https://natanaso.github.io/ece276b/

CONTENTS

I Introduction 1
I-A Markov Decision Process and Dynamic

Programming in Autonomous Navigation 1

II Project Objective 1

III Problem Formulation 1
III-A Action Space 1
III-B State Space: Part A 1
III-C Constraints on State Space 2
III-D Motion Model: Part A 2
III-E Extended State Space Definition: Part B 2
III-F Motion Model: Part B 2

III-F1 Action Dynamics 2
III-F2 State Validation 3

III-G Time Horizon 3
III-H Cost Functions 3

III-H1 Intermediate Cost Function . 3
III-H2 Terminal Cost Function . . . 3

IV Technical Approach 3
IV-A Dynamic Programming Algorithm Im-

plementation 3
IV-B Solving for Known and Unknown En-

vironments 3

V Results 3
V-A Part A 4
V-B Part B 5

VI Conclusion 6

References 6

