
Project 2: LiDAR-Based SLAM
Behrad Rabiei

Dept. of Electrical and Computer Engineering
University of California San Diego

Email: brabiei@ucsd.edu

Abstract—This paper presents a comprehensive report on
Project 2 for the ECE 276A (Sensing and Estimation in Robotics)
course. The core aim of this project was to implement Si-
multaneous Localization And Mapping (SLAM) utilizing data
from various sensors, including IMUs (Inertial Measurement
Units), Encoders, Lidar, and RGBD cameras. Our approach
involved executing Dead Reckoning with the assistance of IMU
and Encoder data to estimate initial trajectories. We enhanced
these estimations through the application of the Iterative Closest
Point (ICP) algorithm on Lidar data, followed by the integration
of factor graphs to refine our trajectory predictions further.
Utilizing the refined trajectories, we generated Occupancy Grid
maps and Texture maps. The texture maps effectively correlate
pixel colors captured by the camera to locations within the global
map, providing a robust framework for robotic navigation and
environment interaction.

I. INTRODUCTION

In the evolving field of robotics, the ability to accurately
perceive and navigate within an environment is paramount.
This capability is essential to numerous applications, from
autonomous vehicles navigating city streets to robots per-
forming complex tasks in unpredictable settings. The core
challenge in achieving such autonomy lies in the robot’s
ability to simultaneously map its environment and ascertain
its position within that map, a process known as Simultaneous
Localization And Mapping (SLAM). We seek to address this
challenge by leveraging a multiple sensors comprising Inertial
Measurement Units (IMUs), Encoders, Lidar, and RGBD
cameras.

Our approach begins with Dead Reckoning, an initial es-
timation process that combines IMU and Encoder data to
track the robot’s position and orientation over time. While
straightforward, Dead Reckoning is prone to cumulative errors;
thus, it serves primarily as a preliminary step. To refine these
estimates, we apply the Iterative Closest Point (ICP) algorithm
to Lidar data. ICP is a technique that iteratively aligns data
points from successive Lidar scans, minimizing the difference
between them to produce a more accurate trajectory estimate.

However, even with the improvements offered by ICP, fur-
ther optimization is necessary to account for the inherent noise
in sensor data and the complexity of real-world environments.
Here, factor graphs come into play. A factor graph is a proba-
bilistic graphical model that represents variables (such as robot
positions) and factors (constraints or measurements relating
these variables) to solve optimization problems efficiently. By
integrating factor graphs, we leverage the full spectrum of
sensor data in a coherent framework, optimizing our trajectory
estimates to a higher degree of precision.

Finally, with these optimized trajectories, we generate two
types of maps: Occupancy Grid maps and Texture maps. Occu-
pancy Grid maps represent the environment as a grid of cells,
each indicating the presence or absence of an obstacle, which
is crucial for path planning and navigation. Texture maps, on
the other hand, enrich this representation by associating each
location with pixel colors from the RGBD camera, offering a
visually detailed map that supports more complex interaction
with the environment. Through these advanced techniques, our
project not only tackles the technical challenges of SLAM but
also contributes to the broader pursuit of creating autonomous
systems capable of understanding and navigating their sur-
roundings.

II. PROBLEM FORMULATION

Our goal is to get a reasonably accurate estimate of the loca-
tion of a robot as it moves around in an unknown environment
and to make a map of that environment over time based on
data that is attained from our sensors.

A. What we Have

1) Robot: The robot we are working with is a differential-
drive robot that is equipped with encoders, IMU, 2-D Lidar,
and a RGBD camera. We will assume the origin of the robot
body is the geometric center of the robot body. This is because
the differential-drive motion model assumes that the robot is
rotating around its center.

2) Encoders: The encoders monitor the rotation of each of
the four wheels at a frequency of 40 Hz, resetting the rotation
count after every measurement. Consider, for instance, that a
single wheel rotation equates to a distance of ℓ meters. Thus,
a sequence of encoder readings such as 0, 1, 0, -2, 3 translates
to a total displacement of (0 + 1 + 0 − 2 + 3)ℓ = 2ℓ meters
for that specific wheel. According to the specifications, the
diameter of each wheel is 0.254 meters and with 360 ticks
per complete revolution. The wheel advances 0.0022 meters
per tick. When the encoder readings for the front-right, front-
left, rear-right, and rear-left wheels are read, denoted as [FR,
FL, RR, RL] respectively, the cumulative distance covered
by the right-side wheels is computed as (FR+RR)

2 × 0.0022
meters, and similarly, the left-side wheels cover a distance of
(FL+RL)

2 × 0.0022 meters.
3) IMU: The Inertial Measurement Unit (IMU) supplies

data on linear acceleration and angular velocity. For our
purposes, only the yaw rate, denoted by ωt at time t, is utilized
from the IMU data to estimate the robot’s motion within

the differential-drive model framework. The utilization of
additional measurements from the IMU is deemed unnecessary
for this application.

4) Hokuyo: A horizontal LiDAR sensor, equipped with a
270◦ field of view and a maximum detection range of 30
m, acquires distances to surrounding obstacles. This sensor,
the Hokuyo UTM-30LX, delivers 1081 range measurements
per scan, details of which are accessible online. The sensor’s
position relative to the robot’s chassis is detailed in the robot’s
specification document. Understanding the interpretation of
LiDAR data is crucial, including the conversion of range
measurements to Cartesian coordinates (x,y) in the sensor’s
coordinate frame, then transforming these to the robot’s body
coordinate frame, and ultimately to the global coordinate
frame.

5) Kinect: An RGBD camera provides both RGB images
and disparity images. The depth camera is positioned at
(0.18, 0.005, 0.36) meters relative to the robot’s center, with
its orientation described by roll 0 radians, pitch 0.36 radians,
and yaw 0.021 radians. The intrinsic parameters of the depth
camera are defined by the matrix K:

K =

 fsu fsθ cu
0 fsv cv
0 0 1

 =

 585.05 0 242.94
0 585.05 315.84
0 0 1


It is observed that the timing of Kinect data is irregular,

with gaps up to 0.2 seconds, due to the logging software’s
inability to capture all data, resulting in dropped frames. The
task is to align the closest SLAM pose with the timestamp
of the current Kinect scan. Notably, the depth and RGB
cameras are not co-located, necessitating a transformation to
align color with depth data due to an x-axis offset between
them. Given a disparity value d at pixel (i, j), the depth depth
and the corresponding RGB pixel location (rgbi, rgbj) can be
calculated as follows:

dd = (−0.00304d+ 3.31)

depth =
1.03

dd

rgbi =
526.37i+ 19276− 7877.07dd

585.051

rgbj =
526.37j + 16662

585.051

These equations facilitate the conversion from disparity
measurements to depth and align depth data with correspond-
ing RGB color locations.

B. Motion Model

Since our robot operates on a differential-drive mechanism,
its motion can be accurately represented using a differential-
drive kinematic model. Specifically, the robot’s movement
over time is modeled through Euler discretization across time
intervals of length τt, where τt denotes the time difference
between two consecutive timesteps:

xt+1 =

xt+1

yt+1

θt+1

 = fd(xt,ut) := xt + τt

vt cos(θt)vt sin(θt)
ωt

 (1)

Where vt is the linear velocity at time t. We would like to
find xt∀t ∈ {0, . . . , T}.

C. Occupancy Grid Map

The objective of occupancy grid mapping is to represent
the environment as a discrete grid where each cell can either
be occupied, free, or unknown. The grid is defined as a set
of cells G = {g1, g2, . . . , gN}, where each cell gi has an
associated occupancy state. The map is updated based on
sensor measurements taken by a robot as it navigates through
the environment.

The problem is formulated as follows: Given a sequence
of sensor measurements z1:t = {z1, z2, . . . , zt} and the
corresponding robot poses x1:t = {x1, x2, . . . , xt}, estimate
the occupancy state of each cell gi in the grid. The occupancy
state is represented using the log odds notation, which converts
the probabilistic occupancy P (gi) into a log odds value l(gi):

l(gi) = log

(
P (gi)

1− P (gi)

)
(2)

where P (gi) is the probability that the cell gi is occupied.
For each measurement zt and pose xt, the log odds update

rule is applied, which adjusts the log odds value l(gi) based on
the likelihood of the sensor measurement given the occupancy
state:

l(gi)t+1 = l(gi)t + log

(
P (zt|gi, xt)

P (zt|¬gi, xt)

)
− l0 (3)

where l0 is the initial log odds value representing a prior
belief of occupancy, and ¬gi denotes the event that the
cell is not occupied. The term P (zt|gi, xt) is the likelihood
of observing zt given that the cell gi is occupied, while
P (zt|¬gi, xt) is the likelihood of zt given the cell is free.

The problem requires determining the log odds values for
all cells over time, taking into account the measurements and
poses, to achieve an accurate occupancy grid map.

D. Texture Map

The aim is to generate a 2-D color map representing the
floor texture, which complements the occupancy grid map of
an environment. This process involves utilizing RGBD images
and the estimated robot trajectory.

Given a set of RGBD images acquired over time, along with
an estimated robot trajectory, the problem involves several key
steps:

1) Depth Acquisition: For each disparity pixel in the
RGBD images, determine the depth using the intrinsic
information.

2) Projection: Convert the 3-D points from the depth
camera’s coordinate frame to the world frame using the
known robot poses and camera calibration parameters.

3) Plane Identification: Identify the floor plane within the
world frame by thresholding the height data at (near)
zero meters, which corresponds to the floor level.

4) Texture Mapping: Create a secondary grid map with
the same resolution as the occupancy grid. For each
cell in this grid, assign the RGB values based on the
corresponding points projected onto the floor plane.

The resulting 2-D map should capture the texture of the floor
by coloring each cell according to the RGB values derived
from the RGBD images, aligned with the world frame, and
adjusted for the robot’s trajectory.

E. Factor Graph

This formulation concerns the enhancement of robot trajec-
tory estimation via pose graph optimization with loop closure
constraints, facilitated by the GTSAM framework.

The objective is to refine the trajectory estimation through
the following steps:

1) Factor Graph Construction: Define a factor graph
G = (X ,F), where X represents the set of robot poses
{x1, x2, . . . , xn}, and F denotes the set of factors that
encode constraints from odometry and loop closures.

2) Odometry Factors: For each consecutive pose xi−1 and
xi, introduce an odometry factor that reflects the motion
model’s prediction.

3) Fixed-Interval Loop Closure: After every predeter-
mined number of poses, such as every 10 poses, enforce
a loop closure constraint floop if a loop is detected.

4) Optimization:
Optimize the pose graph to find the set of poses X ∗

that minimizes the sum of squared residuals from all
constraints:

The solution to this optimization problem yields an updated
set of robot poses that provides an improved estimation of the
robot’s trajectory, which is crucial for accurate mapping.

Fig. 1. Differential-drive robot, equipped with encoders, IMU, 2-D LIDAR
scanner, and an RGBD camera.

III. TECHNICAL APPROACH

A. Preliminary

Before we can fully use all the data that we have at our
disposal, we must first synchronize the data that is coming
from our sensors. All the data that we have from our sensors
have corresponding time stamps. Using this fact, we will use
the closest-in-the-past timestamp of the larger datasets. The
exact method I used is as follows:

Given two sequences of time points, time1 =

{t(1)1 , t
(1)
2 , . . . , t

(1)
n } and time2 = {t(2)1 , t

(2)
2 , . . . , t

(2)
m },

the function find nearest index computes a sequence of
indices I = {i1, i2, . . . , im} such that each index ij
corresponds to the closest time point in time1 to the time
point t(2)j in time2, with the additional consideration that if
t
(2)
j < t

(1)
ij

, then the index is decremented by one to ensure

t
(1)
ij

is truly the nearest value that does not exceed t
(2)
j .

Formally, for each t
(2)
j ∈ time2, we find ij satisfying:

ij = argmin
i

|t(1)i − t
(2)
j |,

and adjust ij as follows:

ij =

{
ij − 1 if t(2)j < t

(1)
ij

,

ij otherwise.

The result is a vector of indices I , which maps each time
point in time2 to its nearest time point in time1, taking
into account the specified condition. This method was crucial
for synchronizing IMU and encoders, encoders and lidar, and
disparity and RGB. A crucial detail is that dataset 20 has more
lidar data than encoders do so you must map lidar to ecoder
data but this is reversed in dataset 21 as there are more encoder
data than lidar data.

B. Dead Reckoning

Our goal is to estimate the trajectory of a robot by syn-
thesizing data from Inertial Measurement Units (IMUs) and
Encoders. The process commences with the derivation of time
intervals between consecutive encoder readings, symbolized
as τt, to encapsulate the temporal dynamics of the robot’s
motion. The encoder data, encompassing the rotation counts
of the robot’s wheels, is necessary for calculating the robot’s
average linear velocity, denoted as v. The velocity vt at time t
is computed by utilizing the encoder data to determine the
average distance traveled by the robot’s wheels within the
time interval τt. This interval represents the time difference
between consecutive encoder readings. The value of ℓ, which
is the distance covered per encoder tick, is defined by the
wheel’s physical characteristics, specifically the distance the
wheel travels per tick. In the provided context, ℓ is explicitly
given as 0.0022 meters per tick. The formula for computing
the velocity vt is thus revised as follows:

vt =

(∑
i=FR,FL,RR,RL

encoder countsi
4

)
× ℓ

τt

Here, τt is precisely the time interval between consecutive
encoder measurements, and encoder countsi represents the
tick counts for each wheel (Front Right FR, Front Left FL,
Rear Right RR, and Rear Left RL). This equation calculates
the robot’s average linear velocity by dividing the average
distance traveled (factoring in the distance per tick ℓ) by the
time interval τt.

For motion estimation, a kinematic motion model is em-
ployed, represented by the function fd, which projects the
robot’s next state based on its current velocity v and ori-
entation, as well as the yaw rate ω derived from the IMU
data. The robot’s state at any time t is defined by its position
(x, y) and orientation (θ), with the initial state presumed to
be at the origin. The subsequent positions and orientations are
iteratively predicted using this motion model, adhering to the
principles of Euler discretization.

C. Scan Matching (ICP)

To accurately estimate the relative transformation between
consecutive robot poses using point cloud data from Lidar
scans, we employ an approach that integrates the Kabsch
algorithm within the Iterative Closest Point (ICP) framework.

1) Initial Setup for Relative Transformation: The process
starts by constructing homogeneous transformation matrices
Tt and Tt+1 for consecutive poses at times t and t + 1,
encapsulating the robot’s pose in a global reference frame.
These matrices are defined as:

Tt =


cos(θt) − sin(θt) 0 xt

sin(θt) cos(θt) 0 yt
0 0 1 0
0 0 0 1



Tt+1 =


cos(θt+1) − sin(θt+1) 0 xt+1

sin(θt+1) cos(θt+1) 0 yt+1

0 0 1 0
0 0 0 1


where θt, xt, and yt denote the orientation and Cartesian

coordinates of the robot at time t, respectively. The relative
transformation Trelative between these poses is then computed
by Trelative = T−1

t · Tt+1.
2) Iterative Closest Point (ICP) Algorithm: ICP iteratively

aligns two point clouds—source (m) and target (z)—extracted
from Lidar scans to minimize their discrepancy. Initial esti-
mates for the rotation matrix (Rk) and translation vector (pk)
facilitate the alignment of the source point cloud towards the
target.

3) Kabsch Algorithm Integration:
1) Centroid Calculation: Determine the centroids m̄ and

z̄ of point clouds m and z, respectively.
2) Translation to Centroids: Shift both point clouds to

position their centroids at the origin.
3) Cross-Covariance Matrix: Construct the cross-

covariance matrix H between the translated point
clouds:

H =
∑

(mi − m̄) · (zi − z̄)T

4) Singular Value Decomposition (SVD): Decompose H
via SVD, where H = UΣV T .

5) Optimal Rotation Matrix: Derive the optimal rotation
matrix Ropt as:

Ropt = U · I · V T

Adjust I as necessary to ensure a proper rotation if the
determinant of Ropt is not 1.

6) Translation Vector: The optimal translation vector p⃗opt
aligns the centroids of the original point clouds under
Ropt:

p⃗opt = m̄−Ropt · z̄

4) Pose Update: Following ICP convergence, the obtained
rotation (Ropt) and translation (p⃗opt) update the initial pose
estimates, refining the relative transformation between con-
secutive robot poses.

D. Occupancy Grid Mapping

In our technical approach to occupancy grid mapping, we
mathematically formulate the environment as a discrete grid,
where each cell represents a potential occupancy state. This
discretization is achieved by dividing the environment into
a matrix of cells with a specific resolution, denoted as ∆,
which defines the physical size of each cell. The process
begins by establishing the boundaries of the map, defined
by xmin, xmax, ymin, and ymax, and the resolution ∆. The
dimensions of the grid, in terms of cells, are computed as
sizex = ⌈(xmax − xmin)/∆⌉ + 1 and sizey = ⌈(ymax −
ymin)/∆⌉ + 1, ensuring that each cell can be indexed and
accessed to represent a portion of the physical space.

To relate the robot’s continuous spatial coordinates to dis-
crete grid indices, a transformation function is utilized. This
function converts a point (x, y) in the robot’s coordinate frame
to grid coordinates (r, c) based on the map’s resolution and
minimum bounds. Specifically, the row index r is calculated
as r = ⌊(x − xmin)/∆⌋ + 1 and the column index c as
c = ⌊(y − ymin)/∆⌋+ 1, effectively mapping the continuous
space to the discrete grid.

The Bresenham2D algorithm plays a critical role in iden-
tifying which cells in the grid are affected by a given sensor
measurement. Originating from computer graphics for drawing
lines on discrete displays, this algorithm is adapted to trace
the path of a sensor’s ray from its start point (sx, sy) to
its endpoint (ex, ey). The algorithm iteratively determines the
grid cells that the line intersects, facilitating efficient marking
of cells as free or occupied based on the sensor data. The algo-
rithm accounts for the steepness of the line to ensure accuracy
in both horizontal and vertical orientations. It calculates the
difference in x and y coordinates (dx and dy), determining the
direction of iteration. Through cumulative addition of decision
variables, Bresenham’s algorithm efficiently identifies the set
of grid cells (x, y) that form the straight-line path between the
sensor and the observed point, enabling precise updates to the
log odds values of the occupancy grid.

In our approach to updating the occupancy grid map with
Lidar data, we systematically transform Lidar range measure-
ments from polar to Cartesian coordinates, accounting for the
robot’s orientation and sensor offset, and then update the map
based on these transformed measurements. The Lidar data,
represented as a series of ranges at specific angles, is first
transposed to align with the processing sequence. Each range r
at an angle ϕ from the Lidar scan is combined with the robot’s
pose (x, y, θ) to compute the position of detected points in the
environment.

The transformation of Lidar measurements into the robot’s
frame involves adjusting the angle of each measurement by the
robot’s current orientation θ and converting polar coordinates
(range and angle) to Cartesian coordinates (x′, y′) using the
following equations:

x′ = x+ r cos(θ + ϕ) + dx

y′ = y + r sin(θ + ϕ) + dy

where dx and dy are the offsets of the Lidar sensor from
the robot’s center, accounting for the physical location of the
sensor. This offset ensures measurements accurately reflect
their origin from the sensor’s perspective relative to the robot’s
center.

The angles ϕ are defined within a range, typically covering
the Lidar’s field of view (in this case, from −135◦ to 135.25◦,
converted to radians), and these angles are adjusted by the
robot’s orientation θ to ensure alignment with the global frame.

Once the Cartesian coordinates of the Lidar points are
determined, we employ the Bresenham2D algorithm to trace
a path from the robot’s location to each detected point. This
algorithm, by iterating over the grid, identifies which cells
the Lidar ray intersects until it reaches the detected obstacle.
For each Lidar ray, this process involves incrementing or
decrementing the log odds values of the cells based on whether
they are along the ray path or at the endpoint of the ray,
respectively. The log odds update for a cell gi along the ray
path is computed as:

l(gi)updated = l(gi)−∆λ

And for the endpoint cell indicating an obstacle:

l(gi)updated = l(gi) + ∆λ

where ∆λ is a constant used to adjust the log odds value,
signifying the cell’s increased or decreased likelihood of being
occupied. The values of ∆λ = 4 and λmax = 20 are constants
that control the rate of change in the log odds values and the
maximum allowable value, respectively, ensuring that the log
odds do not become excessively large or small, which could
skew the map’s accuracy over time.

This procedure is repeated for each selected Lidar ray
(e.g., every tenth ray to balance detail and computational
load), updating the map’s representation of the environment
incrementally. Through this method, the occupancy grid map
dynamically evolves, enhancing the robot’s environmental
understanding and navigational capabilities. Note that we need

to filter out some of the lidar rays as they are outside the
regions where the lidar is valid (i.e. less than 0.1m or greater
than 30m)

E. Texture Mapping

In our texture mapping process, we integrate depth in-
formation from disparity images with RGB textures, based
on camera geometry and the robot’s motion, to construct
an enriched 3D representation of the environment. This pro-
cess involves several computational steps and transformations,
utilizing specific values and equations to ensure accurate
mapping.

The transformation begins by calculating the depth (z) for
each pixel in the disparity images. This calculation is derived
from the disparity values using the equation:

z =
1.03

−0.00304× disparity + 3.31

Here, the constants 1.03 and 3.31 are calibration parameters
specific to the disparity-to-depth conversion process, while
−0.00304 is the disparity gradient that relates pixel disparity
to physical depth.

With the depth information, we compute the 3D coordinates
(X,Y, Z) in the camera’s coordinate system for each pixel.
The intrinsic parameters of the camera, fx = 585.05108211
and fy = 585.05108211, represent the focal lengths in
pixels along the x and y axes, respectively. The optical
center of the camera is given by (cx = 315.83800193, cy =
242.94140713). These parameters facilitate the transformation
from pixel coordinates (u, v) to 3D coordinates:

X = (u− cx)/fx · z

Y = (v − cy)/fy · z

This transformation effectively positions each pixel within a
3D space relative to the camera’s viewpoint.

The next step involves adjusting these 3D coordinates to
account for the camera’s orientation and position on the robot,
using a predefined rotation matrix o R r and a translation
vector p. This adjusts the 3D coordinates from the camera’s
optical frame to the robot’s body frame, considering the cam-
era’s mounting angles and its displacement from the robot’s
geometric center.

To map the 3D points from the robot’s body frame to the
global frame, we use the robot’s pose at the time of each
image capture. The pose includes the robot’s position (x, y)
and orientation (θ), which are used to construct a rotation
matrix R. This matrix rotates the points to align with the
robot’s orientation in the global frame, and then translates
them based on the robot’s position, effectively placing the 3D
points within a global context.

For the texture mapping, we calculate the corresponding
RGB pixel coordinates for each depth pixel using the equa-
tions:

rgbu =

⌊
u× 526.37 + dds× (−4.5× 1750.46) + 19276.0

fx

⌋

rgbv =

⌊
v × 526.37 + 16662.0

fy

⌋
These equations adjust the depth image coordinates to align
with the RGB image, accounting for any disparities between
the two images due to the camera setup. The constants
involved, such as 526.37, 1750.46, 19276.0, and 16662.0,
are calibration parameters specific to the camera and its
configuration, ensuring accurate alignment of depth and RGB
data.

Valid pixel indices are then used to filter out points that do
not have a corresponding texture in the RGB image, ensuring
that only meaningful textures are mapped to the 3D points.
This textured 3D map provides a detailed visual representation
of the environment, combining spatial and color information
for enhanced robotic navigation and interaction.

F. Factor Graphs and Loop Closure

In the development of our graph-based SLAM (Simulta-
neous Localization and Mapping) solution, we leverage the
GTSAM (Georgia Tech Smoothing and Mapping library)
framework to model the robot’s trajectory and map the envi-
ronment. This approach utilizes factor graphs to represent the
relationships between robot poses and landmark observations,
where nodes represent robot poses or landmarks, and factors
represent constraints or measurements between these entities.

1) Graph and Prior Setup: A ‘NonlinearFactorGraph‘ ob-
ject is instantiated to hold our SLAM problem’s factors. We
introduce a prior factor with minimal uncertainty (0.00001 in
all dimensions) on the initial robot pose to anchor our solution,
effectively setting a strong belief that the robot starts at the
origin (0, 0, 0) in the 2D plane.

2) Odometry Factors: For each consecutive pair of poses,
we add odometry (Between) factors that encode the relative
motion, modeled with a noise level defined by σx = σy = 0.1
and σθ = 0.01. These factors represent our belief in the motion
between successive poses based on the robot’s internal sensors,
such as encoders or IMUs.

3) Loop Closure and ICP: Every few steps, determined by
‘dis‘ (distance), we perform a loop closure check to correct
for drift in the robot’s trajectory. I experimented with different
values for ’dis’ and found 5 to be the best. We use the
Lidar measurements at these intervals to identify loop closures.
Valid Lidar ranges are filtered based on a predefined distance
criterion (0.1m < range < 30m) for both the source and
target point clouds. The point clouds are transformed from
polar to Cartesian coordinates, incorporating a constant offset
to adjust for the Lidar sensor’s position on the robot.

Using these point clouds, we perform Iterative Closest Point
(ICP) to estimate the relative transformation between the two
poses. This involves calculating the rotation matrix Rk and
translation vector pk that best align the source point cloud
from the previous pose to the target point cloud at the current
pose. The outcome of the ICP provides a refined estimate of
the relative pose, which is used to add a loop closure factor to
the graph if the estimated rotation is within acceptable bounds

(±π
4). I assumed that any rotation outside of this bound would

not be physically possible for the robot in 5 timesteps.
4) Initial Estimates and Optimization: Initial estimates for

the robot poses are populated based on motion estimates from
the ICP. These estimates serve as the starting point for the
optimization process. The ‘GaussNewtonOptimizer‘ is then
employed to iteratively refine the robot poses and the map
by minimizing the overall error in the factor graph, adhering
to both odometry and loop closure constraints.

IV. RESULTS

We can now visualize the findings from our approaches and
compare them.

A. Dead Reckoning

For the dead reckoning, the trajectories that were found by
using the motion model for both datasets can be found in
Figure 2. The trajectories seem rather reasonable with no sign
of sudden jumps or turns. Using these positions, you can create
a map that represents the floor plan and project lidar scans at
those positions and orientations to get a rough estimate of what
the actual map looks like. This is demonstrated in Figure 3.

Fig. 2. Initial Motion Estimates for Dataset 20 and 21

B. Scan Matching (ICP)

1) Warm-up: The resulting plots of the warm-up for the
drill and the liquid container are shown in Figures 4 and 5
respectively. We can see that our ICP implementation matches

Fig. 3. Projected Lidar Scans for Initial Motion Estimates for Dataset 20 and
21

the cloud points with relatively good accuracy. I would like
to point out that ICP is very sensitive to initialization and
depending on what you choose the final result can be different.

2) Scan Matching: The resulting trajectories for both
datasets are shown in Figure 6. Figure 6 demonstrates a
comparison between the motion model estimates(Red) and the
updated ICP estimates(Blue). By visual inspection, it is clear
that the ICP does not perform as well as the motion model.
This is most likely due to errors propagating in the ICP.

C. Occupancy Grid Mapping

Figures 7 and 8 show all 3 occupancy grid maps (motion
model, ICP, GTSAM) for both datasets. By visual inspection,
it becomes even more clear that the motion model still had the
best estimate out of the 3 methods and GTSAM only makes
the map slightly better.

D. Texture Mapping

Figures 9 and 10 show all 3 texture grid maps (motion
model, ICP, GTSAM) for both datasets. By visual inspection,
it becomes even more clear that the motion model still had the
best estimate out of the 3 methods and GTSAM only makes

Fig. 4. Drill Scan Matching for Warm-up

Fig. 5. Liquid Container Scan Matching for Warm-up

the map slightly better. This result aligns with what we saw
with the occupancy grid maps.

E. Factor Graphs and Loop Closure

The result of factor graph optimization with GTSAM is
demonstrated and compared with the other approaches for
both datasets in Figure 11. We can see that we have a
slight improvement over ICP but still not close to the motion

Fig. 6. Initial Motion Estimates(Red) VS ICP(Blue) for Dataset 20 and 21

model estimates. Further improvements might be possible if
proximity-based loop closure is implemented.

V. CONCLUSION

In this project, our objective was to execute Simultaneous
Localization and Mapping (SLAM) leveraging a comprehen-
sive suite of sensors, including Encoders, an Inertial Measure-
ment Unit (IMU), Lidar, and an RGBD camera. Initially, we
employed Dead Reckoning to acquire a preliminary approx-
imation of the robot’s trajectory, subsequently refining this
estimate by integrating Lidar data through Iterative Closest
Point (ICP) scan matching techniques. To further enhance the
accuracy of our trajectory predictions, we adopted factor graph
optimization, a method that improved the precision of our
estimates. Armed with these refined trajectories, we succeeded
in constructing detailed occupancy grid maps, which delin-
eated the occupied from the unoccupied regions. Moreover,
we developed texture maps by projecting RGB data onto a
global frame, thereby enriching the spatial representation of
the environment. In prospective developments, I anticipate the
incorporation of the Extended Kalman Filter as a means to
achieve similar objectives, potentially offering a sophisticated
alternative to our current methodologies.

REFERENCES

[1] https://en.wikipedia.org/wiki/Spherical coordinate system
[2] https://natanaso.github.io/ece276a/
[3] https://gtsam.org

Fig. 7. Occupancy grid map with Initial Motion Estimate, ICP, and GTSAM
for Dataset 20

Fig. 8. Occupancy grid map with Initial Motion Estimate, ICP, and GTSAM
for Dataset 21

Fig. 9. Texture grid map with Initial Motion Estimate, ICP, and GTSAM for
Dataset 20

Fig. 10. Texture grid map with Initial Motion Estimate, ICP, and GTSAM
for Dataset 21

Fig. 11. Initial Motion, ICP, and GTSAM Trajectories for Dataset 20 and 21

CONTENTS

I Introduction 1

II Problem Formulation 1
II-A What we Have 1

II-A1 Robot 1
II-A2 Encoders 1
II-A3 IMU 1
II-A4 Hokuyo 2
II-A5 Kinect 2

II-B Motion Model 2
II-C Occupancy Grid Map 2
II-D Texture Map 2
II-E Factor Graph 3

III Technical Approach 3
III-A Preliminary 3
III-B Dead Reckoning 3
III-C Scan Matching (ICP) 4

III-C1 Initial Setup for Relative
Transformation 4

III-C2 Iterative Closest Point (ICP)
Algorithm 4

III-C3 Kabsch Algorithm Integration 4
III-C4 Pose Update 4

III-D Occupancy Grid Mapping 4
III-E Texture Mapping 5
III-F Factor Graphs and Loop Closure 6

III-F1 Graph and Prior Setup . . . 6
III-F2 Odometry Factors 6
III-F3 Loop Closure and ICP . . . 6
III-F4 Initial Estimates and Opti-

mization 6

IV Results 6
IV-A Dead Reckoning 6
IV-B Scan Matching (ICP) 6

IV-B1 Warm-up 6
IV-B2 Scan Matching 7

IV-C Occupancy Grid Mapping 7
IV-D Texture Mapping 7
IV-E Factor Graphs and Loop Closure 7

V Conclusion 8

References 8

