
Project 2: Motion Planning
Behrad Rabiei

Dept. of Electrical and Computer Engineering
University of California San Diego

Email: brabiei@ucsd.edu

Abstract—This paper is the report for Project 2 of ECE 276B
(Planning and Learning in Robotics). The overall objective of
this assignment is to find valid paths from a starting point to an
endpoint in a variety of environments. The project requires you
to 1) implement a collision checker to ensure your path does not
collide with any obstacles, 2) implement a search-based algorithm
to find a path, and 3) implement a sampling-based algorithm to
find a path.

I. INTRODUCTION

Autonomous robotic navigation represents a cornerstone
of modern robotics, crucial for enhancing the autonomy and
efficiency of robots in complex and dynamic environments.
The development of robust navigation systems enables robots
to perform a wide range of tasks, from industrial automation
and logistics to autonomous vehicles and space exploration.
By leveraging advanced sensors, algorithms, and learning
techniques, these systems aim to improve safety, reduce human
labor, and expand the capabilities of robots beyond traditional
boundaries. The motivation behind advancing autonomous
navigation is not only to increase operational efficiency but
also to innovate in areas where human access is dangerous or
impractical.

A. Search Based Path Planning

Search-based path planning is a method used in robotics
and other fields to navigate a device or agent from one point
to another while avoiding obstacles. This technique involves
mapping out an environment into a grid or graph, where each
point or node represents a possible state or position the robot
can occupy. The planner then searches through these nodes,
using algorithms like Dijkstra’s or A* (A-star), to find the
most efficient route from the starting point to the destination.
The chosen path must avoid any areas that represent barriers
or hazards, ensuring the robot moves safely and effectively.
This method is particularly useful in structured environments
where the layout and obstacles are clearly defined, making it
easier to plan and predict movements.

B. Sampling Based Path Planning

Sample-based path planning is a strategy commonly used
in robotics to navigate complex or high-dimensional spaces
where traditional grid-based search methods might be imprac-
tical. Unlike search-based methods that evaluate a fixed set
of points, sample-based planning randomly generates points
(or ”samples”) throughout the navigation area. These samples
are then connected to form a roadmap of possible paths

that the robot can take. Algorithms like Rapidly-exploring
Random Trees (RRT) or Probabilistic Roadmaps (PRM) are
popular in this approach. The planner progressively builds a
network that explores the space, avoiding obstacles by only
retaining the connections that lead through safe, navigable
paths. This method is particularly advantageous in large or
unstructured environments, offering a flexible and often more
computationally efficient way to find viable routes from start
to finish.

C. Project Objectives

The overall objective of this project is to develop and
evaluate motion planning algorithms in 3-D environments
characterized by rectangular obstacles and boundaries. The
project is structured into distinct parts aimed at enhancing
both the reliability and efficiency of motion planning strate-
gies. Initially, we are tasked with implementing or utilizing
a collision-checking algorithm that can assess the safety of
paths in 3-D space, specifically checking collisions between
line segments and axis-aligned bounding boxes. Subsequently,
we are required to devise our own search-based planning
algorithm, applying enhanced methods such as weighted A* or
jump point search, with an emphasis on incorporating efficient
collision detection. Finally, the project offers a choice between
creating a sampling-based planning algorithm, such as RRT,
or utilizing and learning from established motion planning
libraries like OMPL or Python’s motion-planning library.

II. PROBLEM FORMULATION

In this section, we will properly formulate the problems of
path planning and collision detection.

A. Path Planning in a 3D Environment

Given:
• A 3D space denoted as R3.
• A starting point s ∈ R3.
• An endpoint e ∈ R3.
• An environment boundary represented as a bounding box

B ⊂ R3.
• A set of axis-aligned bounding box obstacles

{O1, O2, . . . , On} where each Oi is a subset of B
and represents an area that cannot be traversed.

Objective: Find a path P : [0, 1] → R3 such that:
• P (0) = s (path starts at s)
• P (1) = e (path ends at e)

• P (t) ∈ B for all t ∈ [0, 1] (path remains within the
environment boundary)

• P (t) ̸∈ Oi for all t ∈ [0, 1] and for all i (path avoids all
obstacles)

Mathematical Formulation:
1) Continuity Constraint: P should be a continuous func-

tion to ensure the path is feasible for traversal.
2) Boundary Constraint:

∀t ∈ [0, 1], P (t) ∈ B

3) Obstacle Avoidance Constraint:

∀t ∈ [0, 1],∀i ∈ {1, 2, . . . , n}, P (t) ̸∈ Oi

4) Path Optimality (optional, based on specific require-
ments like shortest path, minimum energy, etc.):

min

∫ 1

0

∥dP
dt

∥ dt

This could represent minimizing the length of the path,
although different metrics might be used depending on
the application (e.g., time, energy).

B. Collision Detection between Line Segments and AABBs in
3D Space

We want to know whether a line segment intersects any
given axis-aligned bounding boxes (AABBs) in a continuous
3D space, which is a critical aspect of evaluating the safety
of a path planning algorithm.

• An axis-aligned bounding box (AABB) in 3D is charac-
terized by its minimum corner min = (xmin, ymin, zmin)
and maximum corner max = (xmax, ymax, zmax).

• A line segment in 3D is specified by its two endpoints
p1 = (x1, y1, z1) and p2 = (x2, y2, z2).

The conditions under which the line segment defined by p1

and p2 intersects with one or more AABBs within the defined
3D space are:

1) Identify all t in the parameterization p(t) = p1+t(p2−
p1) for t ∈ [0, 1] that satisfy intersection conditions with
any AABB.

2) For each AABB, ascertain whether there exists a t such
that the segment p(t) lies within the bounding limits of
the AABB along all three dimensions x, y, and z.

3) The criteria for intersection must ensure that the line
segment touches or passes through the interior of any
AABB without merely touching the boundary unless
explicitly considered a collision.

III. TECHNICAL APPROACH

A. Pybullet’s Collision Detection

For the task of collision detection, we decided to go with
the PyBullet library. In PyBullet, the rayTest() func-
tion implements ray-based collision detection by defining
a ray with starting (fromPosition) and ending points
(toPosition). Utilizing the physics engine’s broadphase

and narrowphase detection mechanisms, rayTest() effi-
ciently identifies potential intersections between the ray and
objects within the simulation environment. During the broad-
phase, axis-aligned bounding boxes (AABBs) quickly discard
non-intersecting entities, while the narrowphase conducts de-
tailed intersection tests against the collision meshes of poten-
tially colliding objects. This dual-phase approach optimizes
the computational overhead, making rayTest() suitable for
applications requiring rapid and accurate collision queries,
such as sensor simulation or interactive environments. The
function returns detailed hit information, including the object,
hit fraction, intersection point, and normal at the hit location,
facilitating various applications in robotics, virtual reality, and
game development.

B. A-Star Algorithm

The A* algorithm seeks to find the shortest path from a
start node to a goal node in a graph by minimizing the cost
function f(n) = g(n) + h(n), where:

• g(n) represents the actual cost from the start node to any
node n.

• h(n) is a heuristic function estimating the lowest cost
from node n to the goal.

Heuristic Function: The heuristic function h(n), imple-
mented as heuristic(node, goal), uses the Euclidean
distance to estimate the cost from the current node to the goal.
It is defined mathematically by:

h(n) =
√
(xn − xg)2 + (yn − yg)2 + (zn − zg)2

where (xn, yn, zn) are the coordinates of node n and
(xg, yg, zg) are the coordinates of the goal. We chose 1 for
the weight of the heuristic.

Motion Possibilities: The function
possible_motions(current_node, goal,
boundary) determines valid movements from the current
node. The movements include left, right, up, down, forward,
and backward, with each movement adjusted by a predefined
amount, checking for collisions and boundary constraints.The
final movement amount we chose was 0.3.

Collision and Boundary Checks: Collisions and boundary
checks ensure that a node does not violate spatial constraints.

Node Expansion: Each node expansion checks against the
open and closed lists, ensuring that the node with the least
f(n) value is selected for expansion. Nodes are generated and
evaluated based on:

• Updating g(n) for the movement cost to the node.
• Ensuring that new nodes do not revisit previously closed

nodes.
• Comparing nodes in the open list to possibly replace with

a node having a lower g(n).
Path Reconstruction: Once the goal is reached, the path is

reconstructed by backtracking from the goal node to the start
node using parent pointers. The process continues until the
start node is reached, yielding the complete path from start to
goal.

Algorithm Termination: The algorithm terminates when the
goal node is placed into the closed list, indicating that the
shortest path has been found, or when there are no more nodes
to explore, indicating no available path.

C. Bi-Directional RRT Algorithm

The Bi-Directional Rapidly-exploring Random Trees (Bi-
Directional RRT) algorithm is an extension of the standard
RRT algorithm designed to efficiently find paths in high-
dimensional spaces by simultaneously building two trees, one
from the start and the other from the goal. This method often
reduces the time to find a path compared to the traditional
RRT.

Algorithm Description: Two trees, Tstart and Tgoal, are
initiated respectively from the start node xstart and the goal
node xgoal. The algorithm iteratively expands these trees to-
wards each other by generating random nodes in the space, and
connecting them to the nearest node in each tree, attempting
to bridge the gap between the two trees.

Mathematical Formulation: Let Vstart and Vgoal represent
the set of vertices in the trees Tstart and Tgoal respectively.
At each iteration, a random node xrand is sampled from the
search space X .

The nearest nodes xstart
near and xgoal

near in each tree are deter-
mined by:

xstart
near = argmin

x∈Vstart

d(x, xrand), xgoal
near = argmin

x∈Vgoal

d(x, xrand)

where d(a, b) denotes a distance metric in the space.
New nodes xstart

new and xgoal
new are then created by extending

from xstart
near and xgoal

near towards xrand by a fixed step size ∆q,
constrained by the system’s dynamics and collision constraints.

Hyperparameters:
• Step Size ∆q: Defines how far each new node is from its

nearest node. Affects the smoothness and speed of tree
expansion. In our case we chose 0.3 as the step size.

• Goal Bias γ: A parameter that determines the frequency
at which xrand is set to xgoal instead of being sampled
randomly. This biases the tree expansion towards the goal.

• Maximum Iterations N : The maximum number of iter-
ations the algorithm runs, serving as a stopping condition.
We set this to 500K.

Termination: The algorithm terminates when a path is
found connecting Tstart and Tgoal, or the number of iterations
exceeds N .

Performance: The performance of Bi-Directional RRT is
highly dependent on the tuning of its hyperparameters, espe-
cially in complex environments where the path to the goal is
constrained by obstacles.

IV. RESULTS

Across the board, we see that Bi-Directional RRT finds
shorter paths to the goal compared to the A* results (refer
to figures 22 and 23). With that being said, the BDRRT
takes significantly longer to find a valid path in environments
with many obstacles and tight spaces to navigate through.

In terms of the smoothness of the trajectory, we observe
that the A* algorithm provides smoother paths in complex
environments (refer to figures 10, 11, 16, and 17), while
BDRRT yields easier paths to execute in simpler environments
(refer to figures 1, 2, 13, 14, 19, and 20). Regarding the
number of samples generated, if the environment is simple,
then BDRRT needs to generate very few samples. Conversely,
if the environment is complex, the algorithm needs to produce
many samples, explaining the differences in runtimes (refer to
figures 3 and 15 vs. 6 and 12). Note: all results are included
at the end of the report.

V. CONCLUSION

We successfully achieved the overarching goal of devel-
oping and evaluating motion planning algorithms within 3-D
environments filled with rectangular obstacles and boundaries.
Through the utilization of refined collision-checking algo-
rithms, we ensured the safety and viability of paths, effectively
assessing collisions between line segments and axis-aligned
bounding boxes. Our deployment of enhanced search-based
planning algorithms like weighted A* demonstrated significant
improvements in path smoothness and efficiency, particularly
in complex environments. Moreover, our exploration into
sampling-based planning algorithms, such as Bi-Directional
RRT, and the incorporation of established libraries like OMPL
or Python’s motion-planning library, highlighted the adapt-
ability and speed of these methods in various scenarios. The
comparative analysis between A* and Bi-Directional RRT pro-
vided insightful data on their respective strengths, showcasing
A*’s capability for path finding in complex environments and
Bi-Directional RRT’s proficiency in faster planning times in
simple settings. This project underscored the critical impor-
tance of algorithm selection based on specific environmental
challenges.

REFERENCES

[1] https://natanaso.github.io/ece276b/
[2] https://github.com/motion-planning/rrt-algorithms

Fig. 1. Single Cube A*

Fig. 2. Single Cube Bi-Directional RRT Path

Fig. 3. Single Cube Bi-Directional RRT Tree

Fig. 4. Maze A*

Fig. 5. Maze Bi-Directional RRT Path

Fig. 6. Maze Bi-Directional RRT Tree

Fig. 7. Flappy Bird A*

Fig. 8. Flappy Bird Bi-Directional RRT Path

Fig. 9. Flappy Bird Bi-Directional RRT Tree

Fig. 10. Monza A*

Fig. 11. Monza Bi-Directional RRT Path

Fig. 12. Monza Bi-Directional RRT Tree

Fig. 13. Window A*

Fig. 14. Window Bi-Directional RRT Path

Fig. 15. Window Bi-Directional RRT Tree

Fig. 16. Tower A*

Fig. 17. Tower Bi-Directional RRT Path

Fig. 18. Tower Bi-Directional RRT Tree

Fig. 19. Room A*

Fig. 20. Room Bi-Directional RRT Path

Fig. 21. Room Bi-Directional RRT Tree

Fig. 22. A* Length and Runtime

Fig. 23. Bi-Directional RRT Length and Runtime

CONTENTS

I Introduction 1
I-A Search Based Path Planning 1
I-B Sampling Based Path Planning 1
I-C Project Objectives 1

II Problem Formulation 1
II-A Path Planning in a 3D Environment . . 1
II-B Collision Detection between Line Seg-

ments and AABBs in 3D Space 2

III Technical Approach 2
III-A Pybullet’s Collision Detection 2
III-B A-Star Algorithm 2
III-C Bi-Directional RRT Algorithm 3

IV Results 3

V Conclusion 3

References 3

