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Abstract—This paper presents a comprehensive report on
Project 3 for the ECE 276A course, titled ”Sensing and Estima-
tion in Robotics”. The core aim of this project was to implement
visual-inertial simultaneous localization and mapping (SLAM)
using an extended Kalman filter (EKF). We were provided with
synchronized measurements from an inertial measurement unit
(IMU) and a stereo camera, along with the intrinsic camera
calibration and the extrinsic calibration between the two sensors.
This calibration specifies the transformation from the left camera
frame to the IMU frame. The overall approach begins by
implementing only the prediction step of the EKF to estimate
motion/trajectory. Subsequently, we implemented the update step
of the EKF to refine our initial estimates for the landmark
locations. Finally, we combined both steps to implement VI-
SLAM using the EKF.

I. INTRODUCTION

In the evolving field of robotics, the ability to accurately
perceive and understand the surrounding environment is cru-
cial for the development of autonomous systems. One of
the fundamental challenges in this domain is enabling robots
to precisely locate themselves and map their surroundings
simultaneously, a task known as Simultaneous Localization
and Mapping (SLAM). This project delves into the realm of
visual-inertial SLAM (VI-SLAM), which integrates visual data
from a stereo camera and inertial measurements from an In-
ertial Measurement Unit (IMU) to achieve this objective. The
integration of visual and inertial data offers a robust solution
to SLAM by leveraging the complementary nature of the two
data types: visual data provides rich environmental details
while inertial data offers high-rate motion information. We
utilize synchronized IMU measurements—comprising both
linear and angular velocities expressed in the body frame
of the IMU—and visual feature measurements from detected
landmarks to construct and refine a map of the environment
while concurrently updating the robot’s position and orienta-
tion within it. This process is facilitated by the availability
of timestamps for each set of measurements, intrinsic camera
calibration parameters, and the extrinsic calibration between
the IMU and the camera. These elements together form a
comprehensive dataset that enables the implementation of an
extended Kalman filter (EKF) based VI-SLAM system.

Our dataset includes: linear and angular velocity measure-
ments from the IMU, expressed in the IMU’s body frame
(despite not being concentric with the vehicle, I assume IMU
to be the body frame); pixel coordinates of detected visual
features from stereo camera frames, including precomputed
correspondences between the left and right cameras; times-

tamps for each set of measurements; intrinsic calibration
details of the stereo camera system; and extrinsic calibration
specifying the spatial relationship between the IMU and the
left camera. These data are fundamental to our solution, as they
enable the fusion of visual and inertial information through
an Extended Kalman Filter (EKF), laying the groundwork for
our VI-SLAM implementation. The intrinsic calibration helps
us understand how the camera lens projects 3D world points
onto the 2D image plane, while the extrinsic calibration is
critical for transforming measurements between the camera
and IMU coordinate frames. This integration of data and
calibration aims to precisely track the robot’s trajectory and
map the environment, showcasing the potential of VI-SLAM
in applications ranging from autonomous vehicles to robotic
navigation in unknown territories.

II. PROBLEM FORMULATION

Our goal is to get a reasonably accurate estimate of the loca-
tion of a robot as it moves around in an unknown environment
and to make a map of that environment over time based on
data that is attained from our stereo camera.

A. What we Have

1) IMU Data: These measurements include the linear
velocity and angular velocity of the body, both expressed in
the body frame of the IMU at time t.

1. Linear Velocity (vt): The linear velocity of the body at
time t, expressed in the IMU’s body frame. It is a vector in
R3, representing the velocity along the X, Y, and Z axes of
the IMU’s body frame. Mathematically, it can be represented
as:

vt =

vtxvty
vtz

 ∈ R3

where vtx , vty , and vtz are the components of the linear
velocity in the IMU’s body frame along its X, Y, and Z axes,
respectively.

2. Angular Velocity (ωt): The angular velocity of the body
at time t, also expressed in the IMU’s body frame. Similar to
linear velocity, it is a vector in R3, which represents the rate
of rotation around the X, Y, and Z axes of the IMU’s body
frame. It is given by:

ωt =

ωtx

ωty

ωtz

 ∈ R3



where ωtx , ωty , and ωtz denote the angular velocity com-
ponents around the IMU’s body frame X, Y, and Z axes,
respectively.

These vectors, vt and ωt, provide the essential kinematic in-
formation about the movement of the robot or device equipped
with the IMU, capturing both its translational and rotational
dynamics in the 3D space.

2) Visual Feature Measurements: Visual feature measure-
ments consist of pixel coordinates for detected visual features
from point landmarks. These landmarks are observed through
both the left and right camera frames, with precomputed cor-
respondences between them to facilitate stereo vision analysis.

1. Feature Measurements (zt): At any given time t, zt
represents the pixel coordinates of visual features detected in
the environment, expressed as a matrix in R4×M , where M is
the number of point landmarks. Each column of zt corresponds
to a specific landmark, and each landmark is represented by
four values:

zt,i =


uL
t,i

vLt,i
uR
t,i

vRt,i


for the i-th landmark, where: uL

t,i and vLt,i are the horizontal
and vertical pixel coordinates, respectively, in the left camera
frame. uR

t,i and vRt,i are the corresponding horizontal and
vertical pixel coordinates in the right camera frame. i =
1, 2, . . . ,M , indexing the landmarks.

For landmarks that were not observable at time t, the
measurement is denoted by:

zt,i =


−1
−1
−1
−1


This notation indicates a missing observation for the i-th
landmark.

3) Time Stamps: Each set of measurements from the IMU
and the stereo camera is accompanied by a time stamp, τt,
which records the specific time at which the measurements
were taken. These time stamps are expressed in Unix time,
which counts the number of seconds that have elapsed since
January 1, 1970 (also known as the Unix epoch). Therefore,
for any given measurement at time t, the corresponding time
stamp can be defined as:

τt = Unix time at t = seconds since January 1, 1970

The use of Unix time provides a standardized way of times-
tamping data, ensuring that measurements can be accurately
synchronized and ordered in time.

4) Intrinsic Calibration: The intrinsic calibration of the
stereo camera system includes two key components:

1. Stereo Baseline (b): The distance in meters between the
centers of the left and right cameras.

2. Camera Calibration Matrix (K):

K =

fsu 0 cu
0 fsv cv
0 0 1


where fsu and fsv are the focal lengths of the camera in pixels,
scaled by the respective pixel dimensions in the u (horizontal)
and v (vertical) directions, and cu and cv represent the optical
center of the camera in pixel coordinates.

5) Extrinsic Calibration: The extrinsic calibration de-
scribes the spatial relationship between the left camera and
the IMU, encapsulated by the transformation ITC ∈ SE(3).
This transformation is for mapping measurements from the
camera frame to the IMU frame and vice versa, enabling the
integration of visual and inertial data.

Given that the IMU is mounted upside down on the vehicle,
its frame orientation is defined as x = forward, y = right, and
z = down. This unconventional orientation may necessitate
adjustments when interpreting the IMU’s data, especially for
trajectory estimation. In this case you can either start your
initial orientation as identity but rolled by 180 degrees or flip
the IMU values. I made no adjustment as the results matched
the video that was provided.

B. Localization

In the EKF prediction step for 3D localization, the state of
the robot is updated using the exponential map of the twist
expressed in the robot’s body frame, with noise wt assumed
to be zero mean Gaussian with covariance W . The state is
represented by the homogeneous transformation matrix Tt and
the update rule is given by the matrix exponential of the twist
coordinates.

Given: Tt is the current pose of the robot at time t. ut =[
vt

ωt

]
is the control input at time t, composed of linear velocity

vt and angular velocity ωt. τt is the time step between t and
t+1. ût is the skew-symmetric matrix (hat operator) for twist
coordinates. W is the process noise covariance matrix.

The EKF prediction update is then:
1. State Update:

Tt+1|t = Tt|t exp(τtût)

Here, exp(·) denotes the matrix exponential, and ût is
constructed from the control inputs as:

ût =

[
ω̂t vt

0T 0

]
with ω̂t being the 3×3 skew-symmetric matrix form of ωt.
2. Covariance Update:

Σt+1|t = exp(−τtût)Σt|t exp(−τtût)
T +W

where Σt|t is the current covariance estimate, and W
represents the process noise. The operation exp(−τtût) affects
the covariance by rotating and translating it according to the
twist, taking into account the uncertainty in the robot’s motion.

For the ût in R6×6, it’s given by:



ût =

[
ω̂t v̂t

0 ω̂t

]
where v̂t is the 3 × 3 skew-symmetric matrix form of vt,

and the second ω̂t on the bottom right is the same as the top
left.

This formulation is for the prediction step of an EKF for
3D localization, where the pose is represented by a 4 × 4
homogeneous transformation matrix and the control input is
a twist in R6. The prediction step advances the state estimate
and updates its covariance, preparing for the next measurement
update in the SLAM process.

C. Mapping

We can formulate Mapping like this. Prior mean of the
map’s features µt ∈ R3M and covariance matrix Σt ∈
R3M×3M . Stereo calibration matrix Ks, extrinsics oTl ∈
SE(3), and IMU pose Tt+1. New observations zt+1 ∈
R4Nt+1 .

Mapping Update Process:
Predicted Observation: For each landmark i at time t+1,

compute the predicted observation ẑt+1,i:

ẑt+1,i = Ksπ(oTlT
−1
t+1µt,j)

with µt,j representing the state estimate for the landmark
corresponding to the i-th observation.

Jacobian Calculation: The Jacobian Ht+1,i,j of the pre-
dicted observation ẑt+1,i with respect to the j-th map feature
mj is:

Ht+1,i,j =

{
Ks

dπ
dq

(
oTlT

−1
t+1µt,j

)
oTlT

−1
t+1P

T if ∆t+1(j) = i,

0 otherwise.

EKF Update: Update the map estimates using the Kalman
gain Kt+1, the actual observations zt+1, and the predicted
observations ẑt+1:

Kt+1 = ΣtH
T
t+1

(
Ht+1ΣtH

T
t+1 + I ⊗ V

)−1

µt+1 = µt +Kt+1 (zt+1 − ẑt+1)

Σt+1 = (I −Kt+1Ht+1) Σt

where V represents the measurement noise covariance, I
is the identity matrix, and ⊗ denotes the Kronecker product.
Ht+1 is assembled from the individual Ht+1,i,j Jacobians for
each observed landmark.

This process refines the map’s feature estimates in the
robot’s environment based on new visual observations, im-
proving the map’s accuracy as the robot gathers more data
over time.

D. SLAM

SLAM combines both the localization process and the
mapping. Given the trajectory prediction and landmark update
processes, we need to define a prediction step for landmark
positions and an update step for pose estimation.

1) Landmark Prediction: In the problem of triangulating
the position of a landmark from two cameras, the objective is
to determine the 3D coordinates of a point m in the reference
frame of the first camera, using the pixel coordinates z1 and
z2 from both cameras, along with the known relative rotation
R and translation p between the cameras.

To find m, we solve for the unknown depth λ1 from the
first camera using the pixel coordinates and the relative camera
transformation. The key equation derived for m is:

m =
aTa

aT b
z1

where a and b are given by:

a = RT z1 − eT3 R
T z1z2

b = RT p− eT3 R
T pz2

These equations relate the pixel coordinates in each cam-
era’s image plane to the 3D point m by solving for the scale
factor λ1, which allows us to back-project the 2D coordinates
to 3D space. The vectors a and b encapsulate the geometry
of the stereo camera setup and the observed pixel coordinates,
ultimately enabling the calculation of the landmark’s position.

2) Pose Update: The aim is to refine the estimate of the
robot’s pose µt+1|t in the SE(3) space using new observations
and the known correspondences between landmarks and their
observed positions in the image frame. The process is under-
pinned by a Gaussian prior with mean µt+1|t and covariance
Σt+1|t.

Prior: Gaussian with mean µt+1|t ∈ SE(3) and covariance
Σt+1|t ∈ R6×6. Known quantities: Stereo calibration matrix
Ks, extrinsics oTl ∈ SE(3), and the positions of landmarks
m ∈ R3M . New observations zt+1 ∈ R4Nt+1 .

Process:
1. Predicted Observation: Generate the predicted obser-

vation ẑt+1,i for each landmark i using the transformation
between the robot’s pose and the landmarks:

ẑt+1,i = Ksπ(oTlµ
−1
t+1|tmi)

where π is the projection function from 3D space to the
camera’s image plane, and mi is the position of the i-th
landmark.

2. Jacobian Calculation: Compute the Jacobian Ht+1,i of
the predicted observation with respect to the robot’s pose at
µt+1|t:

Ht+1,i = −Ks
dπ

dq
(oTlµ

−1
t+1|tmi)oTl(µ

−1
t+1|tmi)ø

The ø operation represents the operation on slide 26 of
lecture 12. I couldn’t figure out how to write it in latex.

3. EKF Update: Perform the update step to refine the
robot’s pose estimate:

Kt+1 = Σt+1|tH
T
t+1(Ht+1Σt+1|tH

T
t+1 + I ⊗ V )−1



µt+1|t+1 = µt+1|t exp((Kt+1(zt+1 − ẑt+1))
∧)

Σt+1|t+1 = (I −Kt+1Ht+1)Σt+1|t

Here, V is the measurement noise covariance, I is the
identity matrix, and ⊗ is the Kronecker product. The exp and
∧ operations convert the twist vector into the corresponding
matrix in SE(3). This process uses the new observations to up-
date the estimate of the robot’s pose, accounting for the motion
and sensor measurement uncertainties. The resulting µt+1|t+1

and Σt+1|t+1 represent the updated mean and covariance of
the pose in SE(3) space, reflecting a more accurate estimate
given the new data.

III. TECHNICAL APPROACH

A. IMU Localization via EKF Prediction

In IMU Localization via the Extended Kalman Filter (EKF)
Prediction, we develop a motion model to predict the robot’s
pose and uncertainty over time based on inertial measurement
unit (IMU) data. The prediction phase utilizes linear and
angular velocities (vt and ωt) from the IMU to estimate the
robot’s motion. This process involves two key steps:

1. State Prediction: The robot’s pose is updated using
the exponential map. We compute a matrix ζ incorporating
the angular velocity ωt into a skew-symmetric matrix and
the linear velocity vt into its last column. The new pose,
Tt+1|t, is calculated by multiplying the current pose, Tt|t,
with the exponential of ζ times the timestep (τt), representing
the robot’s movement over the interval.

2. Covariance Prediction: The uncertainty in the robot’s
pose is updated to reflect the prediction’s imprecision and
the inherent noise in the IMU measurements. This is done
by updating the covariance matrix, Σt+1|t, using the matrix
exponential of a constructed matrix uhat that combines the
angular and linear velocities, and then adding process noise
W , which accounts for the uncertainty in the motion model.
The initial pose, Tt|t, and covariance, Σt|t, are set to an
identity matrix and a zero matrix, respectively, indicating the
start of the prediction process with no prior movement. The
process iteratively updates the robot’s predicted state and the
associated covariance for each timestep based on the IMU
data, producing a trajectory that reflects both the estimated
path and the uncertainty around it.

B. Landmark Mapping via EKF Update

In the landmark mapping process of Visual-Inertial SLAM,
we use stereo camera images to triangulate and update the
positions of landmarks in the environment. This process is
outlined in steps as follows:

1. Initialization: Landmark positions are initialized to zero
in a global array meant to hold their 3D coordinates.

2. Observation Processing: At each time step, we filter
valid observations from the stereo images, discarding any that
don’t meet our criteria for valid landmarks.

3. Triangulation: For each valid observation, we convert
pixel coordinates to camera coordinates using the inverse of
the camera’s intrinsic matrix K. We then triangulate the 3D

position of each landmark by solving for its position based on
the geometry of the stereo setup (given by the baseline b and
the relative orientation and position of the two cameras).

4. World Frame Transformation: The 3D positions are
transformed from the camera frame to the world frame using
the robot’s pose estimated from IMU data and the extrinsic
calibration between the IMU and the camera.

5. Map Update: The global map of landmark positions
is updated with these newly calculated positions, refining the
map’s accuracy over time.

6. Filtering: Implausible landmark positions (such as ones
that give a negative z value in optical frame or if the point is to
far from the robot i.e. the norm of the position is greater than
500m) are filtered out to maintain the integrity of the map.

C. Visual-inertial SLAM

Note: the noise value for the plots is, diag([1e-4,1e-4,1e-
4,1e-8,1e-8,1e-8]) for data set 10 and diag([2e-4,2e-4,2e-4,5e-
8,5e-8,5e-8]) for dataset 03.

In the technical approach for Visual-Inertial SLAM (VI-
SLAM), we integrate the processes of IMU localization and
landmark mapping to achieve simultaneous localization and
mapping. This approach involves updating both the robot’s
trajectory and the map of the environment using visual and
inertial data. The key steps in the VI-SLAM process, as
illustrated by the provided code snippet, are detailed below:

1. Initialization: The covariance matrices for landmarks
(σLL) and the robot’s pose (σRR), along with their cross-
covariance (σLR and σRL), are initialized to reflect initial
uncertainties. - The mean state vector (MU ) is initialized,
combining the landmarks’ positions (µL) and the robot’s pose
(µR).

2. Motion Model Update: - For each time step, the robot’s
pose is updated using the motion model derived from IMU
data (linear and angular velocities). This update affects the
pose part of the covariance matrix (σRR), as well as its cross-
covariance with the landmarks’ positions (σLR and σRL). -
The trajectory of the robot (T ) is updated accordingly.

3. Landmark Observation and Update: - At each time
step, valid visual observations of landmarks are identified from
the stereo images. For each observed landmark, its position is
estimated or updated based on triangulation from the stereo
image data. - A Jacobian matrix (H) for the observation model
is constructed, relating the changes in observed landmark
positions to changes in the landmarks’ states and the robot’s
pose.

4. EKF Update: - The Extended Kalman Filter (EKF)
update step is performed using the observation model. This
involves calculating the Kalman gain (Kgain), updating the
mean state vector (MU ), and refining the combined covari-
ance matrix (SIGMA). - This update step adjusts both the
landmarks’ estimated positions and the robot’s pose based on
the new observations, integrating visual and inertial data to
enhance SLAM accuracy.

5. Trajectory Correction: - Corrections to the robot’s
trajectory are applied based on the outcomes of the EKF



update. This involves updating the robot’s pose (T ) using the
corrected state estimates, ensuring the trajectory aligns with
both the inertial measurements and the observed landmark
positions.

6. Covariance Matrix Refinement: - Following the EKF
update, the covariance matrix (SIGMA) is refined to reflect
the updated uncertainties in both the landmarks’ positions
and the robot’s pose. This refinement accounts for the new
information gained from the visual observations and adjusts
the SLAM process’s overall uncertainty.

The VI-SLAM process iteratively refines the map of the
environment and the robot’s trajectory by continuously inte-
grating and updating based on new inertial and visual data.

IV. RESULTS

The plots for the trajectory estimate, landmark locations,
and the SLAM for both datasets are shown in figures 1 through
6. Figure 1 shows our initial trajectory estimate using only
the predict portion of EKF. Then in figure 2 we can see
the landmark initializations versus the updated locations after
running EKF overlaid on our trajectory estimate in part 1. We
can see that the locations have changed after running EKF. The
degree to which the points change depends on the amount of
noise we assume in our sensor. Finally in figure 3 we can see
the result of the visual inertial SLAM with before and after
for both trajectory and landmark locations. This part is also
very sensitive to the noise you assume for the sensor. In Figure
3 we see that the trajectory deviates more when we select a
larger W value than the one in Figure 6. In Figure 6 the noise
is set very low and thus very little deviation for the trajectory
(there is still some deviation in both trajectory and landmark
location).

V. CONCLUSION

In conclusion, the comprehensive exploration of visual-
inertial simultaneous localization and mapping (VI-SLAM)
within this study demonstrates importance of sensing and
estimation. By integrating data from an inertial measurement
unit (IMU) and a stereo camera, and leveraging the strengths
of the extended Kalman filter (EKF), this project successfully
achieved accurate localization and mapping in an unknown en-
vironment. The results validate the efficacy of the approach in
handling the complexities of VI-SLAM. Notably, the sensitiv-
ity of the SLAM process to assumed sensor noise underscores
the importance of precise sensor modeling and calibration.
The implementation showcases not only the potential of EKF-
based VI-SLAM in enhancing autonomous robotic navigation
but also highlights areas for further research, particularly in
optimizing sensor noise models to improve the robustness and
accuracy of localization and mapping.



Fig. 1. Trajectory estimate for dataset 03

Fig. 2. landmark estimate for dataset 03

Fig. 3. VI-SLAM for dataset 03

Fig. 4. Trajectory estimate for dataset 10

Fig. 5. landmark estimate for dataset 10



Fig. 6. VI-SLAM for dataset 10
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