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Abstract—This paper is the report for Project 3 of ECE 276B
(Planning and Learning in Robotics). The main objective of
the project is to implement algorithms that will derive optimal
control policies for a differential drive vehicle to trace a given
trajectory. The two algorithms that we explored in this project
are receding-horizon Certainty Equivalent Control (CEC) and
Generalized Policy Iteration (GPI).

I. INTRODUCTION

In the rapidly evolving field of robotics, the ability to ensure
safe and accurate trajectory tracking is extremely important,
especially for ground differential-drive robots widely used
in various applications. These robots, characterized by their
two independently driven wheels, require precise movement
control to navigate complex environments effectively. This
capability is not only critical in enhancing the operational
efficiency of autonomous systems but also crucial in ensur-
ing safety in interactions with humans and the surrounding
infrastructure. From autonomous delivery services navigating
busy city streets to robots performing tasks in hazardous or in-
accessible areas, the importance of reliable trajectory tracking
should not be under estimated. This project explores advanced
algorithms and control systems to achieve safe trajectory
tracking, aiming to significantly improve the adaptability and
safety of differential-drive robots.

A. Receding-Horizon Certainty Equivalent Control (CEC)

The Receding-Horizon Certainty Equivalent Control (CEC)
is a sophisticated algorithm that plays a crucial role in
trajectory tracking for differential-drive robots. At its core,
CEC operates by continually updating its control decisions
based on a predictive model over a finite future horizon.
This ”receding horizon” approach involves optimizing control
actions at each step based on current state estimates, and
then shifting the window forward as time progresses. In
practice, the CEC algorithm treats the future states and inputs
as known and fixed (hence, ”certainty equivalent”), ignoring
uncertainty beyond the immediate planning horizon. This
simplifies the computational complexity, making the algorithm
more practical for real-time applications. It recalculates the
optimal path and control inputs at each step, based on the
latest available data, which allows it to adapt dynamically to
changes in the environment or robot state.Receding-Horizon
CEC is widely utilized in fields where precise control and
adaptability are necessary, such as in autonomous vehicles,

unmanned aerial vehicles (UAVs), and robotic manipulators
in industrial automation. These applications benefit from the
algorithm’s ability to handle complex, dynamic environments
while maintaining a high level of performance and safety.

B. General Policy Iteration

Generalized Policy Iteration (GPI) is a robust framework
used in the field of reinforcement learning, which is well-
suited for complex decision-making tasks such as trajectory
tracking in robotics. GPI iteratively improves both the policy
(the robot’s strategy for action selection) and the value function
(an estimate of the expected long-term return from each state
under the current policy). This iterative process consists of two
main phases: policy evaluation, where the value function is
updated to accurately reflect the returns obtained by following
the current policy, and policy improvement, where the policy
is refined to yield higher returns based on the updated value
function. The strength of GPI lies in its adaptability and
convergence properties. By continually updating the policy
and the corresponding value function, GPI can adapt to a wide
range of environments and tasks. It systematically explores and
exploits the solution space, ensuring that the robot’s trajectory
becomes increasingly optimal with each iteration. This makes
GPI particularly effective for tasks where the environment
may change or where the robot must learn from interactions
with the environment without explicit programming for every
possible scenario. In robotics, GPI is employed in navigation
and obstacle avoidance, among other tasks, enabling robots to
learn from their experiences and improve their performance
over time autonomously. This capability is crucial for devel-
oping robots that operate effectively in dynamic, unpredictable
settings such as urban landscapes, disaster sites, and varied
industrial environments.

II. PROBLEM FORMULATION

This project considers the design of a safe trajectory track-
ing control system for a ground differential-drive robot. Define
the state of the robot at any discrete time step t ∈ N as
xt := (pt, θt), where pt ∈ R2 represents the position and
θt ∈ [−π, π) represents the orientation. The control inputs to
the robot are its linear velocity vt ∈ R and angular velocity
(yaw rate) ωt ∈ R, represented together as ut := (vt, ωt).



The kinematic model of the robot, derived via Euler dis-
cretization with a timestep ∆ > 0, is formulated as:

xt+1 =

[
pt+1

θt+1

]
=

[
pt
θt

]
+∆

cos(θt) 0
sin(θt) 0

0 1

[
vt
ωt

]
+ wt, (1)

where wt ∈ R3 represents the motion noise with Gaussian
distribution N(0, diag(σ)2) and σ = [0.04, 0.04, 0.004] ∈ R3.
The motion noise is assumed independent of the robot’s state
and across different times.

The control inputs are bounded within the set U := [0, 1]×
[−1, 1]. The primary objective is to design a control policy for
the appropriate robot to follow a desired trajectory consisting
of a reference position trajectory rt ∈ R2 and orientation tra-
jectory αt ∈ [−π, π), while avoiding obstacles and collisions.
The environment includes two circular obstacles: C1 centered
at (−2,−2) with radius 0.5, and C2 centered at (1, 2) with
radius 0.5. The free space F in the environment is thus defined
as:

F := [−3, 3]2 \ (C1 ∪ C2).

To measure deviation from the reference trajectory, we
define the error state et := (p̃t, θ̃t) where p̃t := pt − rt and
θ̃t := θt − αt. The error dynamics are given by:

et+1 =

[
p̃t+1

θ̃t+1

]
=

[
p̃t
θ̃t

]
+∆

cos(θ̃t + αt) 0

sin(θ̃t + αt) 0
0 1

[
vt
ωt

]

+

[
rt − rt+1

αt − αt+1

]
+ wt,

(2)

We formulate the trajectory tracking with initial time τ
and initial tracking error e as a discounted infinite-horizon
stochastic optimal control problem:

V ∗(τ, e) = min
π

E
[ ∞∑

t=τ

γt−τ
(
p̃⊤t Qp̃t

+ q(1− cos(θ̃t))
2

+ u⊤
t Rut

)
| eτ = e

] (3)

subject to:

et+1 = g(t, et, ut, wt), wt ∼ N(0, diag(σ)2)
t = τ, τ + 1, . . .

ut = π(t, et) ∈ U,

p̃t + rt ∈ F,

where Q ∈ R2×2 is a symmetric positive-definite matrix defin-
ing the stage cost for deviating from the reference position
trajectory rt, q > 0 is a scalar defining the stage cost for
deviating from the reference orientation trajectory αt, and
R ∈ R2×2 is a symmetric positive-definite matrix defining
the stage cost for using excessive control effort.

A. Certainty Equivalent Control (CEC)

Certainty Equivalent Control (CEC) represents a suboptimal
control scheme that applies, at each control stage, the control
input that would be optimal if the noise variables wt were
assumed to be fixed at their expected values (zero in this
case). The primary advantage of CEC is its simplification of a
stochastic optimal control problem to a deterministic optimal
control problem, which is generally more tractable.

Moreover, receding-horizon CEC approximates an infinite-
horizon problem by iteratively solving the following dis-
counted finite-horizon deterministic optimal control problem
at each time step:

V ∗(τ, e) ≈ min
uτ ,...,uτ+T−1

{
q(eτ+T ) +

τ+T−1∑
t=τ

γt−τ

(p̃⊤t Qp̃t + q(1− cos(θ̃t))
2

+u⊤
t Rut)

} (4)

subject to the following constraints:

et+1 = g(t, et, ut, 0), t = τ, . . . , τ + T − 1,

ut ∈ U,

p̃t + rt ∈ F,

where q(e) is a suitably chosen terminal cost function.
The receding-horizon CEC problem thus forms a non-linear

programming (NLP) problem expressed as:

min
U

c(U,E) s.t. Ulb ≤ U ≤ Uub, hlb ≤ h(U,E) ≤ hub,

(5)
where U := [u⊤

τ , . . . , u
⊤
τ+T−1]

⊤ and E := [e⊤τ , . . . , e
⊤
τ+T ]

⊤.
Upon deriving a control sequence uτ , . . . , uτ+T−1, CEC

applies the first control uτ to the system, updates the error
state to eτ+1 at the subsequent time τ + 1, and repeats
the optimization process defined in Equation (4) online to
determine the next control input uτ+1. This ongoing re-
planning is essential, as the CEC approach does not inherently
account for the effects of motion noise.

B. General Policy Iteration

In the second part of this project, we aim to solve the
stochastic optimal control problem described in Equation
(3) using the Generalized Policy Iteration (GPI) algorithm.
To apply GPI, it is necessary to discretize the continuous
state and control spaces. The state space is discretized into
(nt, nx, ny, nθ) grid points, while the control space is rep-
resented by (nv, nω) grid points. It is important to note
that θ̃, representing an angle, requires wrap-around handling
to maintain continuity over 2π. The temporal discretization
parameter nt is set to 100, aligning with the periodicity of the
provided reference trajectory.

The position error p̃ and the control inputs u are discretized
over the regions [−3, 3]2 and U , respectively. To establish
the transition probabilities in the discretized Markov Decision
Process (MDP), for each discrete state e and each control
action u, we select the next grid points e′ centered around



the expected state transition g(t, e, u, 0). The transition like-
lihoods, governed by N(0, diag(σ)2), are evaluated at these
points and normalized so that the sum of outgoing probabilities
equals one.

Furthermore, the safety constraint p̃t + rt ∈ F must be
enforced by either restricting transitions to non-colliding states
or incorporating an additional stage-cost term to penalize po-
tential collisions. Generally, a denser discretization of the state
and control spaces can yield a more accurate approximation
of the continuous problem, though at the cost of an increased
computational burden for the GPI algorithm. Adaptive dis-
cretization strategies are employed to refine the grid in areas
closer to the reference trajectory and coarsen it further away,
enhancing computational efficiency while maintaining solution
fidelity.

Similar considerations apply to the control space, where
finer control actions are beneficial near the reference trajectory
or near obstacles. It is also crucial to maintain compatibility
between the densities of the state space and control space
grids; for instance, a dense control discretization is ineffectual
with a sparse state space grid as minute controls would not
result in discernible state transitions.

To expedite the computation, pre-computing certain values
can be advantageous. Specifically, the transition probabilities
pf (e

′|e, u) can be precomputed and stored in a multidi-
mensional matrix of dimensions (nt, nx, ny, nθ, nv, nω, 8, 4),
considering 8 neighboring states. This approach can similarly
be applied to pre-compute and store stage costs ℓ(e, u),
facilitating faster algorithm execution.

1) GPI Details: The Generalized Policy Iteration (GPI)
serves as the principal mechanism for solving stochastic
infinite-horizon problems over Markov Decision Processes
(MDPs) with known models. GPI operates in two main phases:
Policy Evaluation and Policy Improvement.

Policy Evaluation

In the policy evaluation step, given a policy π, the value
function V π is computed for every state x ∈ X . The value
function at each state is defined by:

V π(x) = ℓ(x, π(x)) + γEx′∼pf (·|x,π(x)) [V
π(x′)] , (6)

where ℓ(x, π(x)) denotes the immediate cost of taking action
π(x) in state x, and γ is the discount factor which balances the
importance of immediate and future rewards. The expectation
is taken over the state transitions according to the policy π.

Policy Improvement

During policy improvement, a new policy π′ is derived by
optimizing the expected total cost, updating the policy at every
state as follows:

π′(x) ∈ arg min
u∈U(x)

{
ℓ(x, u) + γEx′∼pf (·|x,u) [V

π(x′)]
}
, (7)

for all x ∈ X . This step involves determining the action u that
minimizes the sum of the immediate cost and the discounted
value of the next state, as expected under the current pol-
icy.This iterative process of evaluating and improving policies

continues until the policy converges, resulting in an optimal
policy that minimizes the long-term expected cost for all states
in the MDP.

III. TECHNICAL APPROACH

CEC

This section describes the implementation of the Receding-
Horizon Certainty Equivalent Control (CEC) strategy using
CasADi for nonlinear optimization. The CEC method is em-
ployed to determine the optimal control inputs for a system
given its current and reference states. The primary objective
is to minimize a cost function over a finite time horizon while
adhering to specified constraints.

A. Initialization

The CEC class initializes with a set time horizon T of 15
time steps and a discount factor γ of 0.95. These parameters
determine the temporal scope of the optimization and the
weighting of future costs, respectively. The state cost for
position, Q, is defined as a 2 × 2 identity matrix, and the
control cost, R, is also a 2× 2 identity matrix. Additionally,
the state cost for orientation, q, is set to 1. These cost matrices
are crucial for formulating the optimization objective function,
balancing the trade-offs between state deviations and control
efforts.

B. Control Calculation

The core functionality of the CEC strategy is encapsulated
in the __call__ method, which computes the control input
based on the current time step, current state, and reference
state. The method begins by generating a sequence of reference
states over the time horizon T using a Lissajous trajectory
function. This trajectory serves as the desired path the system
should follow.

Optimization variables, specifically the velocity vt and
angular velocity wt, are defined using CasADi symbolic ex-
pressions. These variables represent the control inputs at each
time step. The objective function is formulated to minimize the
cost, which is a combination of state and control costs. The
state cost includes the position error weighted by Q and the
orientation error weighted by q. The control cost is weighted
by R. The objective function is given by:

objective =

T∑
i=1

γi
(
p⊤
t Qpt + q (1− cos(et[2]))

2
+ u⊤

t Rut

)
where pt represents the position error, et[2] represents the

orientation error, and ut represents the control input vector.

C. Constraints and Optimization

In the Receding-Horizon Certainty Equivalent Control
(CEC) strategy, constraints play a critical role in ensuring the
feasibility and safety of the control inputs. These constraints
are incorporated into the nonlinear programming problem
(NLP) to restrict the optimization variables within acceptable
limits and to address obstacle avoidance.



1) Bounds on Optimization Variables: The optimization
variables, specifically the control inputs vt (velocity) and wt

(angular velocity), are subject to lower and upper bounds.
These bounds are defined to ensure that the control actions
are physically realizable and to prevent excessive or unrealistic
control efforts. The lower bounds are set to [0.5, 0.5] and the
upper bounds are set to [100, 100] for each time step from 1
to T − 1. This results in a constraint formulation as follows:

0.5 ≤ vt, wt ≤ 100 ∀t ∈ {1, . . . , T − 1}

2) State Constraints for Obstacle Avoidance: To incorpo-
rate obstacle avoidance, the state variables are constrained
to maintain a safe distance from predefined obstacles. Two
specific constraints are included to ensure the system avoids
collision with obstacles at given locations. These constraints
are formulated as:

(et[0]+ref states[i][0]+2)2+(et[1]+ref states[i][1]+2)2 ≥ d2min

(et[0]+ref states[i][0]−1)2+(et[1]+ref states[i][1]−2)2 ≥ d2min

where et[0] and et[1] are the position errors in the x and
y directions, respectively, and ref states[i] represent the refer-
ence states at time step i. The value dmin denotes the minimum
distance required to avoid the obstacle. These constraints are
appended to the list of optimization constraints to ensure the
system’s trajectory remains collision-free.

3) Formulating the NLP: The nonlinear programming prob-
lem (NLP) is formulated by combining the objective function
and the constraints. The CasADi solver nlpsol with the
’ipopt’ algorithm is employed to solve the NLP. The solver is
configured with specific options to control the level of output
and computational performance.

The complete NLP formulation includes:
• The objective function, which aims to minimize the

cumulative cost over the time horizon.
• The bounds on the optimization variables vt and wt.
• The state constraints for obstacle avoidance, ensuring safe

navigation.
4) Solver Execution and Solution Extraction: Upon defin-

ing the NLP, the solver is executed with an initial guess
(all zeros in my case) for the optimization variables and the
defined bounds and constraints. The solution provided by the
solver includes the optimal control inputs for each time step.
These inputs are then extracted and used to control the system,
ensuring it follows the reference trajectory while minimizing
the cost and avoiding obstacles.

GPI

D. State Discretization

Instead of directly using world coordinates, we utilize a
state space for the error between the actual position and the
reference, denoted as et. This state space is discretized into
grids to make the problem computationally feasible for the

GPI algorithm. The state space X is discretized into a grid
with dimensions (Nt, Nx, Ny, Nθ), where:

• Nt represents discretized time steps, set to 100 to match
the reference trajectory period.

• Nx, Ny , and Nθ represent the number of discretized
points in the position error and orientation error spaces,
set to (21, 21, 10) respectively. (These are the values the
TA used on Piazza)

The control space U is discretized into (Nv, Nw), where:
• Nv and Nw represent the number of discretized points in

the control input space for linear and angular velocities,
respectively set to (6, 11). (These are the values the TA
used on Piazza)

To achieve this, the position error et and control input
u are adaptively discretized over predefined regions. This
is implemented using np.linspace and the hyperbolic
tangent function by solving y = tanh(x) for y within the
bounds of our space [−3, 3]. Using np.linspace, an even
distribution between these points is found. Plugging these
values back into the hyperbolic tangent function results in a
denser discretization towards the origin, providing finer control
near the reference trajectory.

Transition Matrix and Stage Cost Precomputation: Tran-
sition probabilities for the discretized Markov Decision Pro-
cess (MDP) are precomputed. For each discrete state e and
control u, the next grid points e′ are chosen around the mean
g(t, e, u, 0), considering only the immediate 8 neighbors. Their
likelihood of transitioning to each grid point is evaluated using
a multivariate normal distribution with a mean of g(t, e, u, 0)
and a diagonal covariance matrix σ2. The probabilities are
normalized to ensure they sum to 1.Stage costs are similarly
precomputed. Precomputing these elements is crucial as it
allows for faster computations and implementation of the
algorithm.

E. Collision Avoidance Handling

Collision avoidance is handled by introducing additional
stage costs for grid points that fall within the collision margin
of defined obstacles. Specifically: A collision margin is defined
around obstacles to create a buffer. During the stage cost
computation, any state within this margin incurs a higher
cost, effectively discouraging the policy from selecting paths
through these regions.

The stage costs are precomputed for all state-action pairs,
taking into account position and orientation errors as well as
control inputs. This precomputation allows for efficient lookup
during the GPI iterations. The cost function includes terms for
position error, orientation error, and control effort, weighted
by matrices Q, R, and a scalar q for the orientation error.

F. Implementation Details of the GPI Algorithm

The implementation of the General Policy Iteration (GPI)
algorithm involves several key steps:

1) Initialization: Initialize the value function V (e) arbi-
trarily (e.g., to zero) for all states e.



2) Policy Evaluation: For the current policy π, evaluate
the value function V (e) iteratively:

V (e) =
∑
e′,u

P (e′|e, u) [C(e, u) + γV (e′)] (8)

where P (e′|e, u) are the transition probabilities, C(e, u)
is the stage cost, and γ is the discount factor.

3) Policy Improvement: Update the policy π by choosing
the control action u that minimizes the expected cost:

π(e) = argmin
u

∑
e′

P (e′|e, u) [C(e, u) + γV (e′)] (9)

4) Convergence Check: Repeat the policy evaluation and
improvement steps until the policy converges, i.e., there
are no significant changes in the value function V (e).

IV. RESULTS

NOTE: I have provided two reference images demonstrating
how the implementations in parts A and B track the reference
trajectory in Figures 1 and 3. I have also provided some
statistics for the sample in part A in Figure 3. Unfortunately,
I forgot to screenshot the statistics for part B while I was
working on the code, and it takes an unbelievable amount
of time to rerun the algorithm. For reference, my transition
matrices take nearly 4 hours to pre-compute.

A. Part A

In Figure 1, we can see that the CEC implementation
does a good job of following the reference trajectory. One
subtle point is that the robot sometimes gets very close to
the obstacles. This is probably due to the environmental noise
that we are not accounting for in the CEC implementation.
In terms of runtime, the CEC implementation is exceptionally
fast compared to GPI. This could be because Casadi is most
likely written in a way that is fully optimized compared to
my suboptimal implementation of GPI. Certain flaws I have
noticed with CEC are that it sometimes scrapes obstacles and
also dramatically deviates from the reference trajectory.

B. Part B

The GPI implementation appears to follow the reference
trajectory, but it struggles in certain scenarios. For example, on
the outside edges, the robot curves out in the opposite direction
and meets the reference robot at the other end of the curve.
I’m not quite sure what is causing this, but it could be a result
of my control and input space discretization. Given more time,
I could have debugged the implementation further, but given
how time-consuming running the code is and the limited time
to study for finals, this was the best result I could produce.

V. CONCLUSION

The implementation of the receding-horizon Certainty
Equivalent Control (CEC) and Generalized Policy Iteration
(GPI) algorithms showcased the strengths and limitations
of each approach in trajectory tracking for differential-drive

Fig. 1. Sample trajectory from part A

Fig. 2. Performance and Runtime from part A

Fig. 3. Sample trajectory from Part B



robots. The CEC method demonstrated efficient runtime per-
formance and effective trajectory following, although it occa-
sionally failed to account for environmental noise, resulting in
minor deviations and obstacle collisions. On the other hand,
GPI, while computationally intensive, provided a robust frame-
work for policy improvement through adaptive discretization,
yet struggled with certain trajectory edge cases. These results
highlight the trade-offs between computational efficiency and
control accuracy, suggesting that future work could focus
on integrating noise management in CEC and refining dis-
cretization methods in GPI to enhance overall performance in
dynamic and unpredictable environments.
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